先閱讀下列因式分解的過程,再回答所提出的問題:

例1:1+ax+ax(1+ax)=(1+ax)(1+ax)

=(1+ax)2;

例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2

=(1+ax)2+ax(1+ax)2

=(1+ax)2(1+ax)

=(1+ax)3

(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=。1+axn+1 ;

(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004

(答題要求:請將第(1)問的答案填寫在題中的橫線上)

 

【答案】

(1)(1+ax)n+1  (2)(x﹣1)2005

【解析】

試題分析:首先把式子整理,可知是將一個(gè)多項(xiàng)式進(jìn)行因式分解,考慮運(yùn)用分組分解法.

(1)可以把1+ax分成一組,看作一個(gè)整體,反復(fù)利用提公因式法就可求解.

(2)可以把x﹣1分成一組,看作一個(gè)整體,反復(fù)利用提公因式法就可求解.

解:(1)1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n,

=(1+ax)(1+ax)+ax(1+ax)2+…+ax(1+ax)n,

=(1+ax)2+ax(1+ax)2+…+ax(1+ax)n

=(1+ax)2(1+ax)+…+ax(1+ax)n,

=(1+ax)3+…+ax(1+ax)n,

=(1+ax)n1+ax

=(1+ax)n+1;

(2)x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004,

=(x﹣1)(1﹣x)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004,

=(x﹣1)2(﹣1+x)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004,

=(x﹣1)2(1﹣x)+…﹣x(x﹣1)2003+x(x﹣1)2004,

=(x﹣1)2005

考點(diǎn):因式分解-分組分解法.

點(diǎn)評(píng):本題考查了分組分解法分解因式,關(guān)鍵是將原式轉(zhuǎn)化為(x﹣1)n的形式,解題時(shí)要有構(gòu)造意識(shí)和想象力.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=
(1+ax)n+1
;
(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-分組法因式分解(帶解析) 題型:解答題

先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n= (1+ax)n+1 ;
(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=______;
(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:計(jì)算題

先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2
=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=                            ;
(2)分解因式:x﹣1﹣x(x﹣1)+x(x﹣1)2﹣x(x﹣1)3+…﹣x(x﹣1)2003+x(x﹣1)2004(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

同步練習(xí)冊答案