【題目】定義:圓心在三角形的一邊上,與另一邊相切,且經(jīng)過(guò)三角形一個(gè)頂點(diǎn)(非切點(diǎn))的圓,稱(chēng)為這個(gè)三角形圓心所在邊上的“伴隨圓”.

(1)如圖1,△ABC中,∠C=90°,AB=5,BC=3,則AC邊上的伴隨圓的半徑為
(2)如圖2,已知等腰△ABC,AB=AC=5,BC=6,畫(huà)草圖并直接寫(xiě)出它的所有伴隨圓的半徑.
(3)如圖3,△ABC中,∠ACB=90°,點(diǎn)P在邊AB上,AP=2BP,D為AC中點(diǎn),且∠CPD=90°.
①求證:△CPD的外接圓是△ABC某一條邊上的伴隨圓;
②求cos∠PDC的值.

【答案】
(1)2
(2)解:當(dāng)O在BC上時(shí),如圖(1)所示:連接OD,過(guò)點(diǎn)A作AE⊥BC.

∵AB=AC,AE⊥BC,

∴BE=EC=3.

在△AEB中,由勾股定理可知AE= =4.

∵AB與⊙O相切,

∴OD⊥AB.

∴∠BDO=∠BEA=90°.

又∵∠OBD=∠EBA,

∴△ODB∽△AEB.

設(shè)⊙O的半徑為r.在OB=6﹣r.

∴r=

∴△ABC的BC邊上的伴隨圓的半徑為

當(dāng)O在AB上時(shí),如圖(2),連接OD、過(guò)點(diǎn)A作AE⊥BC,垂足為E.

∵BC與⊙O相切,∴OD⊥BC.又∵AE⊥BC,

∴OD∥AE.∴△BOD∽△BAE.

設(shè)⊙O的半徑為r,則OB=5﹣r.∴ .∴r=

如圖(3)所示:連接OD、過(guò)點(diǎn)B作BF⊥AC,過(guò)點(diǎn)A作AE⊥BC,垂足為E.

∵S△ABC= BCAE= ACBF,∴ ×6×4= ×5×BF.∴BF=4.8.

∵AC與⊙O相切,∴DO⊥AC.∴DO∥BF.

∴△AOD∽△ABF.∴ .∴r=

綜上所述,△ABC的伴隨圓的半徑分為


(3)解:①證明:如圖(4)連接OP、OB.

∵△CPD為直角三角形,

∴△CPD的外接圓圓心O在CD中點(diǎn).

設(shè)⊙O的半徑為r,則DC=2r,OA=3r.∴ .∵PA=2BP,

.∴ .∴PD∥OB.∴∠1=∠2,∠3=∠4.

又∵∠3=∠2,∴∠1=∠4.在△BCO和△BPO中 ,∴△BCO≌△BPO.

∴∠BPO=∠BCO=90°.∴AB是圓O的切線(xiàn).

∴△CPD的外接圓是△ABC某一條邊上的伴隨圓.

②如圖(4)設(shè)圓O的半徑為r.

∵在Rt△OAP中,OA=3r,OP=r,

∴PA= =2 r.

∴AB=3 r.

∵在Rt△ABC中,AC=4r,AB=3 r,

∴BC= = a.

∵在Rt△OBC中,OC=r,BC= r,

∴OB= = r.

∴cos∠1= = =

∵∠PDC=∠1,

∴cos∠PDC=


【解析】(1)∵∠C=90°,AB=5,BC=3,

∴AC= =4.

∵BC是圓的切線(xiàn),∠BCA=90°,

∴AC為圓的直徑.

∴AC邊上的半隨圓的半徑為2.

所以答案是:2.


【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線(xiàn)的性質(zhì)定理的相關(guān)知識(shí),掌握切線(xiàn)的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)2、經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心3、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑,以及對(duì)切線(xiàn)的判定定理的理解,了解切線(xiàn)的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在第一象限內(nèi),點(diǎn)P(2,3),M(a,2)是雙曲線(xiàn)y= (k≠0)上的兩點(diǎn),PA⊥x軸于點(diǎn)A,MB⊥x軸于點(diǎn)B,PA與OM交于點(diǎn)C,則△OAC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】暑假期間,小剛一家乘車(chē)去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車(chē)行駛時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車(chē)一共用了多少時(shí)間?
(2)求線(xiàn)段AB對(duì)應(yīng)的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時(shí)時(shí)離目的地多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△DCE都是等邊三角形,B,C,E三點(diǎn)在同一條直線(xiàn)上,若AB=6,BAD=150°,則DE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,,其中滿(mǎn)足

1)填空:_______________;

2)若在第三象限內(nèi)有一點(diǎn),用含的式子表示的面積;

3)在(2)條件下,當(dāng)時(shí),點(diǎn)是坐標(biāo)軸上的動(dòng)點(diǎn),當(dāng)滿(mǎn)足的面積是的面積的2倍時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線(xiàn)的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線(xiàn)互相垂直的三角形稱(chēng)為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線(xiàn),AM⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當(dāng)tan∠PAB=1,c=4 時(shí),a= , b=
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= , b=;

(2)【歸納證明】
請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.

(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3 ,AB=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①②,的兩邊分別平行.

1)在圖①中,有什么數(shù)量關(guān)系?為什么?

2)在圖②中,有什么數(shù)量關(guān)系?為什么?

3)由(1)(2)你能得出什么結(jié)論?用一句話(huà)概括你得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線(xiàn)l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,設(shè)直線(xiàn)l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若△OMN的面積為S,直線(xiàn)l的運(yùn)動(dòng)時(shí)間為t 秒(0≤t≤4),則能大致反映S與t的函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線(xiàn)AP交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,射線(xiàn)BP交DE于點(diǎn)K,點(diǎn)O是線(xiàn)段BK的中點(diǎn),作BM⊥AE于點(diǎn)M,作KN⊥AE于點(diǎn)N,連結(jié)MO、NO,以下四個(gè)結(jié)論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案