(2013•麗水)如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作⊙O的切線,交AC的延長線于點(diǎn)F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求
AD
的長.
分析:(1)連接AE,求出AE⊥BC,根據(jù)等腰三角形性質(zhì)求出即可;
(2)求出∠ABC,求出∠ABF,即可求出答案;
(3)求出∠AOD度數(shù),求出半徑,即可求出答案.
解答:解:(1)連接AE,
∵AB是⊙O直徑,
∴∠AEB=90°,
即AE⊥BC,
∵AB=AC,
∴BE=CE.

(2)∵∠BAC=54°,AB=AC,
∴∠ABC=63°,
∵BF是⊙O切線,
∴∠ABF=90°,
∴∠CBF=∠ABF-∠ABC=27°.

(3)連接OD,
∵OA=OD,∠BAC=54°,
∴∠AOD=72°,
∵AB=6,
∴OA=3,
∴弧AD的長是
72π×3
180
=
5
點(diǎn)評:本題考查了切線的性質(zhì),等腰三角形的性質(zhì),弧長公式,圓周角定理的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點(diǎn)D,AD=3,BC=10,則△BDC的面積是
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖,AB∥CD,AD和BC相交于點(diǎn)O,∠A=20°,∠COD=100°,則∠C的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖,點(diǎn)P是反比例函數(shù)y=
k
x
(k<0)圖象上的點(diǎn),PA垂直x軸于點(diǎn)A(-1,0),點(diǎn)C的坐標(biāo)為(1,0),PC交y軸于點(diǎn)B,連結(jié)AB,已知AB=
5

(1)k的值是
-4
-4
;
(2)若M(a,b)是該反比例函數(shù)圖象上的點(diǎn),且滿足∠MBA<∠ABC,則a的取值范圍是
0<a<2或
-11-
33
2
<a<
-11+
33
2
0<a<2或
-11-
33
2
<a<
-11+
33
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12 m.設(shè)AD的長為x m,DC的長為y m.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•麗水)如圖1,點(diǎn)A是x軸正半軸上的動點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對稱點(diǎn),連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(1)當(dāng)t=2時,求CF的長;
(2)①當(dāng)t為何值時,點(diǎn)C落在線段BD上;
     ②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時,將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點(diǎn)的四邊形沿C′F′剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合上述條件的點(diǎn)C′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案