【題目】如圖,等腰ABC的底邊BC長為4,面積為16,腰AC的垂直平分線EF分別交AC、AB邊于E、F兩點,若DBC邊中點,點M為線段EF上一動點,則CDM周長的最小值為 ( )

A. 6 B. 8 C. 12 D. 10

【答案】D

【解析】連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關(guān)于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.

連接AD,
∵△ABC是等腰三角形,點D是BC邊的中點,
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=16,解得AD=8,
∵EF是線段AB的垂直平分線,
∴點B關(guān)于直線EF的對稱點為點A,
∴AD的長為CM+MD的最小值,
∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家16月份的用水量統(tǒng)計如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯誤的是 ).

A、眾數(shù)是6 B、平均數(shù)是5 C、中位數(shù)是5 D、方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形ABCD為正方形,點E,F分別在ABBC上,且∠EDF=45°,易證:AE+CF=EF(不用證明).

1)如圖②,在四邊形ABCD中,∠ADC=120°DA=DC,∠DAB=BCD=90°,點E,F分別在ABBC上,且∠EDF=60°.猜想AE,CFEF之間的數(shù)量關(guān)系,并證明你的猜想;

2)如圖③,在四邊形ABCD中,∠ADC=2αDA=DC,∠DAB與∠BCD互補(bǔ),點EF分別在ABBC上,且∠EDF=α,請直接寫出AE,CFEF之間的數(shù)量關(guān)系,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,利用直尺和圓規(guī)完成如下操作:

①作∠BAC的平分線交BC于點D;

②作邊AB的垂直平分線EF,EFAD相交于P點;

③連接PB、PC,

請你觀察所作圖形,解答下列問題:

1)線段PA、PB、PC之間的大小關(guān)系是________;

2)若∠ABC=68°,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】燈會節(jié)將在農(nóng)博園舉辦.承辦方計劃在現(xiàn)場安裝小彩燈和大彩燈.已知安裝5個小彩燈和4個大彩燈共需150元;安裝7個小彩燈和6個大彩燈共需220元.

(1)安裝1個小彩燈和1個大彩燈各需多少元.

(2)若承辦方安裝小彩燈和大彩燈的數(shù)量共300個,費(fèi)用不超過4350元,則最多安裝大彩燈多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是大家公認(rèn)的商用元年.移動通訊行業(yè)人員想了解手機(jī)的使用情況,在某高校隨機(jī)對500位大學(xué)生進(jìn)行了問卷調(diào)查.下列說法正確的是( )

A.該調(diào)查方式是普查

B.該調(diào)查中的個體是每一位大學(xué)生

C.該調(diào)查中的樣本是被隨機(jī)調(diào)查的500位大學(xué)生手機(jī)的使用情況

D.該調(diào)査中的樣本容量是500位大學(xué)生

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;

(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直線經(jīng)過點,直線經(jīng)過點,且關(guān)于軸對稱,則的交點坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案