【題目】一個角的補角是這個角余角的3倍,則這個角是度.

【答案】45
【解析】解:設這個角為x,
由題意得,180°﹣x=3(90°﹣x),
解得x=45°,
則這個角是45°,
所以答案是:45.
【考點精析】利用余角和補角的特征對題目進行判斷即可得到答案,需要熟知互余、互補是指兩個角的數(shù)量關系,與兩個角的位置無關.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=(x﹣2)2+1的頂點坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.

(1)求證:CF是⊙O的切線;

(2)若∠F=30°,EB=4,求圖中陰影部分的面積(結果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班將舉行“防溺水安全知識競賽”活動,班主任安排班長購買獎品,下面是班長買回獎品時與班主任的對話情況:
班長:買了兩種不同的獎品共50件,單價分別為3元和5元,我領了200元,現(xiàn)在找回35元
班主任:你肯定搞錯了!
班長:哦!我把自己口袋里的15元一起當作找回的錢款了.
班主任:這就對了!
請根據上面的信息,解決下列問題:
(1)計算兩種獎品各買了多少件?
(2)請你解釋:班長為什么不可能找回35元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,E是直線AB,CD內部一點,AB∥CD,連接EA,ED.

(1)探究猜想:
①若∠A=35°,∠D=30°,則∠AED等于多少度?
②若∠A=48°,∠D=32°,則∠AED等于多少度?
③猜想圖1中∠AED,∠EAB,∠EDC的關系并證明你的結論.
(2)拓展應用:
如圖2,射線EF與長方形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域③、④位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關系(不要求寫出證明過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸的原點為O,如圖所示,點A表示﹣2,點B表示3,請回答下列問題:
(1)數(shù)軸是什么圖形?數(shù)軸在原點右邊的部分(包括原點)是什么圖形?數(shù)軸上表示不小于﹣2,且不大于3的部分是什么圖形?請你分別給它們取一個合適的名字;
(2)請你在射線AO上再標上一個點C(不與A點重合),那么表示點C的值x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若Pm,n與點Q﹣2,3關于原點對稱,則點P在第_____象限.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M,N分別是正五邊形ABCDE的邊BC,CD上的點,且BM=CN,AM交BN于點P,則∠APN的度數(shù)為(
A.120°
B.118°
C.110°
D.108°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在離水面高度為5米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13米,此人以0.5米每秒的速度收繩,10秒后船移動到點D的位置,問船向岸邊移動了多少米?(假設繩子是直的,結果保留根號)

查看答案和解析>>

同步練習冊答案