【題目】已知:△ABC中,AB=AC,∠BAC=90°.
(1)如圖(1),CD平分∠ACB交AB于點(diǎn)D,BE⊥CD于點(diǎn)E,延長BE、CA相交于點(diǎn)F,請猜想線段BE與CD的數(shù)量關(guān)系,并說明理由.
(2)如圖(2),點(diǎn)F在BC上,∠BFE=∠ACB,BE⊥FE于點(diǎn)E,AB與FE交于點(diǎn)D,F(xiàn)H∥AC交AB于H,延長FH、BE相交于點(diǎn)G,求證:BE=FD;
(3)如圖(3),點(diǎn)F在BC延長線上,∠BFE=∠ACB,BE⊥FE于點(diǎn)E,F(xiàn)E交BA延長線于點(diǎn)D,請你直接寫出線段BE與FD的數(shù)量關(guān)系(不需要證明).
【答案】(1)BE=CD.(2)證明見解析;(3)BE=FD.證明見解析.
【解析】
(1)先利用AAS證明△ABF≌△ACD,得到BF=CD,再利用ASA證明△BCE≌△FCE,從而得到BE=FE=BF,進(jìn)而得出BE=CD;
(2)利用“等角對等邊”證明BH=FH,再通過證明△BFE≌△GFE,得到BE=GB,再證明△BHG≌△FHD,得到BG=FD,從而得到BE=FD;
(3)利用相同的方法可得BF和FD的關(guān)系.
(1)猜想:BE=CD.
理由:∵BE⊥CD,∠BAC=90°,∠BDE=∠ADC,
∴∠ABF=∠ACD,∠BAF=∠BAC.
在△ABF和△ACD中,
,
∴△ABF≌△ACD(AAS).
∴BF=CD.
∵CD平分∠ACB,
∴∠BCE=∠FCE.
∵BE⊥CD,
∴∠BEC=∠FEC=90°.
在△BCE和△FCE中,
,
∴△BCE≌△FCE(ASA).
∴BE=FE=BF.
∴BE=CD.
(2)證明:∵AB=AC,F(xiàn)H∥AC
∴∠ABC=∠ACB,∠BFH=∠ACB.
∴∠BHF=∠BAC=90°.∠ABC=∠BFH.
∴BH=FH.
∵∠BFE=∠ACB,
∴∠EFG=∠ACB.
∴∠BFE=∠EFG.
∵BE⊥FE,
∴∠BEF=∠GEF.
在△BFE和△GFE中,
,
∴△BFE≌△GFE(ASA).
∴BE=GE.
∴BE=GB.
在△BHG和△FHD中,
,
∴△BHG≌△FHD(ASA).
∴BG=FD,
∴BE=FD.
(3)BE=FD.
證明:過點(diǎn)F作GF∥AC,交BE,AD延長線于點(diǎn)G,H
∴∠BFG=∠ACB
∵∠BFE=∠ACB
∴∠BFE=∠GFE
在△FBE和△FBG中
,
∴△FBE≌△FBG(ASA)
∴∠EFB=∠EFG
BE=EG=BG
∵FG∥AC
∴∠BAC=∠BHF=90°
在四邊形GEDH中
∠G+∠EDG=180°
又∵∠HDF+∠EDH=180°
∴∠HDF=∠G
在△DHF和△GHB中
,
∴△DHF≌△GHB(AAS)
∴BG=DF
∴BE=FD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次科技活動(dòng)中,小明進(jìn)行了模擬雷達(dá)掃描實(shí)驗(yàn).如圖,表盤是△ABC,其中AB=AC,∠BAC=120°,在點(diǎn)A處有一束紅外光線AP,從AB開始,繞點(diǎn)A逆時(shí)針勻速旋轉(zhuǎn),每秒鐘旋轉(zhuǎn)15°,到達(dá)AC后立即以相同旋轉(zhuǎn)速度返回AB,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過程.小明通過實(shí)驗(yàn)發(fā)現(xiàn),光線從AB處旋轉(zhuǎn)開始計(jì)時(shí),旋轉(zhuǎn)1秒,此時(shí)光線AP交BC邊于點(diǎn)M,BM的長為(20 ﹣20)cm.
(1)求AB的長;
(2)從AB處旋轉(zhuǎn)開始計(jì)時(shí),若旋轉(zhuǎn)6秒,此時(shí)光線AP與BC邊的交點(diǎn)在什么位置?若旋轉(zhuǎn)2014秒,交點(diǎn)又在什么位置?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l(wèi)甲、l乙分別表示甲、乙兩人前往目的地所走的路程S(km)隨時(shí)間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時(shí);③乙走了8km后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接“六一”兒童節(jié)的到來,某校學(xué)生參加獻(xiàn)愛心捐款活動(dòng),隨機(jī)抽取該校部分學(xué)生的捐款數(shù)進(jìn)行統(tǒng)計(jì)分析,相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖如下:
(1)該樣本的容量是 , 樣本中捐款15元的學(xué)生有人;
(2)若該校一共有500名學(xué)生,據(jù)此樣本估計(jì)該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣ x2+ x+2的圖象與x軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C.過動(dòng)點(diǎn)H(0,m)作平行于x軸的直線l,直線l與二次函數(shù)y=﹣ x2+ x+2的圖象相交于點(diǎn)D,E.
(1)寫出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若m>0,以DE為直徑作⊙Q,當(dāng)⊙Q與x軸相切時(shí),求m的值;
(3)直線l上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng):探究利用角的對稱性構(gòu)造全等三角形解決問題
(1)如圖①,OP是∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形;(寫出簡單做法,不用證明兩三角形全等,不用尺規(guī)作圖亦可)
(2)如圖②,在△ABC中,∠ACB=90°,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.請直接填空:∠AFE= 度,DF EF(填>,<或=);
(3)如圖③,在△ABC中,如果∠ACB≠90°,而(2)中的其他條件不變,請問,你在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正反比例函數(shù)的圖像交于、兩點(diǎn),過第二象限的點(diǎn)作軸,點(diǎn)的橫坐標(biāo)為,且,點(diǎn)在第四象限
(1)求這兩個(gè)函數(shù)解析式;
(2)求這兩個(gè)函數(shù)圖像的交點(diǎn)坐標(biāo);
(3)若點(diǎn)在坐標(biāo)軸上,聯(lián)結(jié)、,寫出當(dāng)時(shí)的點(diǎn)坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售面向中考生的計(jì)數(shù)跳繩,每根成本為20元,銷售的前40天內(nèi)的日銷售量m(根)與時(shí)間t(天)的關(guān)系如表.
時(shí)間t(天) | 1 | 3 | 8 | 10 | 26 | … |
日銷售量m(件) | 51 | 49 | 44 | 42 | 26 | … |
前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為:y1= t+25(1≤t≤20且t為整數(shù));后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為:y2=﹣ t+40(21≤t≤40且t為整數(shù)).
(1)認(rèn)真分析表中的數(shù)據(jù),用所學(xué)過的一次函數(shù),二次函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)m(件)與t(天)之間的關(guān)系式;
(2)請計(jì)算40天中娜一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈(zèng)a元利潤(a<3)給希望工程,公司通過銷售記錄發(fā)現(xiàn),前20天中扣除捐贈(zèng)后的日銷售利潤隨時(shí)間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com