【題目】如圖,在△ABC中,∠C=45°,∠B=60°,BC+1,點P為邊AB上一動點,過點PPDBC于點DPEAC于點E,則DE的最小值為_____

【答案】

【解析】

當(dāng)CPAB時,線段DE的值最小,利用四點共圓的判定可得:CD、PE四點共圓,且直徑為CP,由B=60°,BC+1,求出PC,從而得出半徑OD的長度,然后由∠ACB=45°,得到∠EOD=90°,利用等腰直角三角形的性質(zhì),可求出DE的值.

解:當(dāng)CPAB時,線段DE的值最。ㄒ驗樗倪呅C、D、P、E四點共圓,PC是直徑,BC=和∠B=60°是定值,所以直徑CP最小時,∠DCE所對的弦DE最小);如圖:

PDBCD,PEACE,

∴∠CDP=AEP=90°

∴∠CDP+AEP=180°,

C、D、P、E四點共圓,且直徑為CP,

∵∠B=60°,CPAB,BC=,

,即,

,

,

∵∠ACB=45°,

∴∠EOD=90°,

∴△OED是等腰直角三角形,

;

DE的最小值為:.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,的弦,平分于點,連接、,過點,交的延長線于點

1________(填“>”,“<”或“=”);

2)求證:的切線;

3)若的直徑為10,sinBAC,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A′B′C′的位置,已知△ABC的面積為18,陰影部分三角形的面積為8,若AA′=1,則A′D的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們把關(guān)于某一點成中心對稱的兩條拋物線叫孿生拋物線;(1)已知拋物線Ly=﹣x2+4x軸交于A、B兩點(AB的左側(cè)),與y軸交于C點,求L關(guān)于坐標(biāo)原點O0,0)的孿生拋物線W;(2)點N為坐標(biāo)平面內(nèi)一點,且△BCN是以BC為斜邊的等腰直角三角形,在x軸是否存在一點Mm,0),使拋物線L關(guān)于點M孿生拋物線過點N,如果存在,求出M點坐標(biāo);不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA⊙O相切于點A,過點AAB⊥OP,垂足為C,交⊙O于點B.連接PB,AO,并延長AO⊙O于點D,與PB的延長線交于點E

(1)求證:PB⊙O的切線;

(2)OC=3,AC=4,求PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實綠水青山就是金山銀山的發(fā)展理念,某市政部門招標(biāo)一工程隊負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù)該工程隊有兩種型號的挖掘機,已知3型和5型挖掘機同時施工一小時挖土165立方米;4型和7型挖掘機同時施工一小時挖土225立方米每臺型挖掘機一小時的施工費用為300,每臺型挖掘機一小時的施工費用為180

(1)分別求每臺, 型挖掘機一小時挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直角三角形,

1)請用尺規(guī)作圖法,作,使它與相切于點,與相交于點;保留作圖痕跡,不寫作法,請標(biāo)明字母)

2)在(1)的圖中,若,求弧的長.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣23)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標(biāo);

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖,請求出M點的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案