已知,m、n是一元二次方程x2-3x-1=0的兩個根,則(m2-3m-31)(2n2-6n-69)=   
【答案】分析:根據(jù)一元二次方程的解的定義得到m2-3m-1=0,n2-3n-1=0,變形為m2-3m=1,n2-3n=1,然后把題目整體代入(m2-3m-31)(2n2-6n-69)進行計算即可.
解答:解:∵m、n是一元二次方程x2-3x-1=0的兩個根,
∴m2-3m-1=0,n2-3n-1=0,
∴m2-3m=1,n2-3n=1,
∴(m2-3m-31)(2n2-6n-69)=(m2-3m-31)×[2(n2-3n)-69]=(1-31)×(2×1-69)=2010.
故答案為2010.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩根為x1,x2,則x1+x2=-,x1•x2=.也考查了一元二次方程的解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程(m2-9)x2+(m+3)x-5=0.
①當(dāng)m為何值時,此方程是一元一次方程?并求出此時方程的解.
②當(dāng)m為何值時,此方程是一元二次方程?并寫出這個方程的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面文字:
一般的,對于關(guān)于x的一元二次方程x2+px+q=0(p,g為常數(shù),P2-4q≥O)的兩根為x1=
-p+
p2-4q
2
、x2=
-p-
p2-4q
2
,則x1+x2=-p,x1×x2=q.
用這個結(jié)論可以解決有關(guān)問題,例如:已知關(guān)于x的一元二方程x2+3x+1=0的兩根為x1、x2,求
x
2
1
+
x
2
2
的值.
解:∵x1、x2是方程x2+3x+1=0的兩根,∴x1+x2=-3,x1×x2=1,∴
x
2
1
+
x
2
2
=(x1+x2)2-2x1x2=(-3)2-2×1=7

請解決下面的問題:
(1)已知一元二次方程x2-3x-7=0的兩個根為x1、x2,則x1+x2的值為
3
3

A、-3    B、3    C、-7D、7
(2)已知x1、x2是方程x2-2x-1=0的兩根,試求(x1-2)(x2-2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.這一結(jié)論稱為一元二次方程根與系數(shù)關(guān)系,它的應(yīng)用很多,請完成下列各題:
(1)應(yīng)用一:用來檢驗解方程是否正確.
檢驗:先求x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

再將你解出的兩根相加、相乘,即可判斷解得的根是否正確.(本小題完成填空即可)
(2)應(yīng)用二:用來求一些代數(shù)式的值.
①已知:x1、x2是方程x2-4x+2的兩個實數(shù)根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的兩個實數(shù)根,求代數(shù)式a2+3a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:數(shù)學(xué)公式數(shù)學(xué)公式.這一結(jié)論稱為一元二次方程根與系數(shù)關(guān)系,它的應(yīng)用很多,請完成下列各題:
(1)應(yīng)用一:用來檢驗解方程是否正確.
檢驗:先求x1+x2=______,x1x2=______.
再將你解出的兩根相加、相乘,即可判斷解得的根是否正確.(本小題完成填空即可)
(2)應(yīng)用二:用來求一些代數(shù)式的值.
①已知:x1、x2是方程x2-4x+2的兩個實數(shù)根,求(x1-1)(x2-1)的值;
②若a、b是方程x2+2x-2013=0的兩個實數(shù)根,求代數(shù)式a2+3a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省中考真題 題型:填空題

已知x=1是一元二次方的一個根,則的值為(    )。

查看答案和解析>>

同步練習(xí)冊答案