分析 連接AC.首先根據(jù)勾股定理求得AC的長,再根據(jù)勾股定理的逆定理求得∠D=90°,由題意可知四邊形ABCD的面積等于兩個直角三角形的面積問題的解.
解答 解:連接AC,如圖所示:
在Rt△ABC中,AC2=AB2+BC2=72+242=625,∵AC>0,∴AC=25,
在△CAD中,AD2+CD2=400+225=625=AC2∴AD2+CD2=AC2
∴∠ADC=90°,
S四邊形ABCD=S△BAC+S△ADC=$\frac{1}{2}$•AB•BC+$\frac{1}{2}$AD•DC,
=$\frac{1}{2}$×24×7+$\frac{1}{2}$×15×20=84+150=234,
答:這塊四邊形草坪ABCD的面積是234米2.
點評 考查了勾股定理和勾股定理的逆定理,通過作輔助線可將一般的四邊形轉化為兩個直角三角形,使面積的求解過程變得簡單.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com