對(duì)于實(shí)數(shù)c、d,我們可用min{ c,d }表示c、d兩數(shù)中較小的數(shù),如min{3,-1}=-1.若關(guān)于x的函數(shù)y=min{2x2,a(x-t)2}的圖象關(guān)于直線x=3對(duì)稱,則a、t的值可能是(  )
分析:先根據(jù)函數(shù)y=2x2可知此函數(shù)的對(duì)稱軸為y軸,由于函數(shù)關(guān)于直線x=3對(duì)稱,所以數(shù)y=min{2x2,a(x-t)2}的圖象即為y=a(x-t)2的圖象,據(jù)此解答即可.
解答:解:∵y=2x2中a=2,
∴y=a(x-t)2,中,a=2,
∵二次函數(shù)y=ax2+bx+c都可以化成y=a(x-m)2+n形式,其中m=-
b
2a
,n=
4ac-b2
4a
,
∵圖象開口向上,即a>0,那么a=2,點(diǎn)(3,y)為這兩個(gè)函數(shù)的交點(diǎn),
∴2×32=a(3-t)2,解得t=6.
故選C.
點(diǎn)評(píng):本題考查的是二次函數(shù)的圖象與幾何變換,先根據(jù)題意求出a的值是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)c、d,我們可用min{ c,d }表示c、d兩數(shù)中較小的數(shù),如min{3,-1}=-1.則關(guān)于x的代數(shù)式的最小值min{3x2-6x+
3
2
,x2+2x-1}是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點(diǎn)A、點(diǎn)B,與y軸的正半軸交于點(diǎn)C,點(diǎn) A的坐標(biāo)為(1,0),OB=OC,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)若此拋物線的對(duì)稱軸上的點(diǎn)P滿足∠APB=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,對(duì)于實(shí)數(shù)c、d,我們可用min{ c,d }表示c、d兩數(shù)中較小的數(shù),如min{3,-1}=-1.若關(guān)于x的函數(shù)y=min{ax2-4ax+4a+c,m(x-t)2-1(m>0)}的圖象關(guān)于直線x=3對(duì)稱,試討論其與動(dòng)直線y=
12
x+n
交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點(diǎn)A、點(diǎn)B,與y軸的正半軸交于點(diǎn)C,點(diǎn) A的坐標(biāo)為(1,0),OB=OC,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)若此拋物線的對(duì)稱軸上的點(diǎn)P滿足∠APB=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,對(duì)于實(shí)數(shù)c、d,我們可用min{ c,d }表示c、d兩數(shù)中較小的數(shù),如min{3,-1}=-1.若關(guān)于x的函數(shù)y=min{ax2-4ax+4a+c,m(x-t)2-1(m>0)}的圖象關(guān)于直線x=3對(duì)稱,試討論其與動(dòng)直線數(shù)學(xué)公式交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)c、d,我們可用min{c,d }表示c、d兩數(shù)中較小的數(shù),如min{3,}=.若關(guān)于x的函數(shù)y= min{}的圖象關(guān)于直線對(duì)稱,則a、t的值可能是

   (    )

A.3,6               B.2,

 C.2,6              D.,6

 

查看答案和解析>>

同步練習(xí)冊(cè)答案