【題目】計(jì)算題

(1)﹣24+(﹣16)﹣(﹣18)﹣13

(2)

(3)﹣22÷(﹣4)3+|0.8﹣1|×

(4)99×49

【答案】(1)-35;(2)71;(3);(4)4899 .

【解析】

1)先化簡(jiǎn),再計(jì)算加減法;

2)(4)根據(jù)乘法分配律簡(jiǎn)便計(jì)算

3)先算乘方,再算乘除最后算加減;同級(jí)運(yùn)算,應(yīng)按從左到右的順序進(jìn)行計(jì)算;如果有括號(hào)要先做括號(hào)內(nèi)的運(yùn)算

1)﹣24+(﹣16)﹣(﹣18)﹣13

=﹣2416+1813

=﹣53+18

=﹣35;

2

=×(﹣60)﹣×(﹣60)﹣×(﹣60

=﹣40+55+56

=71;

3)﹣22÷(﹣43+|0.81

=﹣4÷(﹣64+0.2×

=+

=1

499×49

=(100×49

=100×49×49

=4900

=4899

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說(shuō)明理由;
(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè) , ,請(qǐng)?zhí)剿? , 滿足的等量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點(diǎn)在AD邊上以每秒1cm的速度從AD運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線段PQ有( )次平行于AB

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2017的坐標(biāo)為( )

A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過(guò)點(diǎn)E作 EF∥AD,與AC、DC 分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連結(jié)DE、 EH、DH、FH.下列結(jié)論:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若,則.其中結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l上依次有三點(diǎn)A、B、C,且AB=8、BC=16,點(diǎn)P為射線AB上一動(dòng)點(diǎn),將線段AP進(jìn)行翻折得到線段PA′(點(diǎn)A落在直線l上點(diǎn)A′處、線段AP上的所有點(diǎn)與線段PA′上的點(diǎn)對(duì)應(yīng)).

(1)若翻折后A′C=2,則翻折前線段AP=  

(2)若點(diǎn)P在線段BC上運(yùn)動(dòng),點(diǎn)M為線段A′C的中點(diǎn),直接寫出線段PM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于任意一點(diǎn)P(x,y),我們做以下規(guī)定:d(P)=|x|+|y|,稱d(P)為點(diǎn)P的坐標(biāo)距離.

(1)已知:點(diǎn)P(3,﹣4),求點(diǎn)P的坐標(biāo)距離d(P)的值.

(2)如圖,四邊形OABC為正方形,且點(diǎn)A、B在第一象限,點(diǎn)C在第四象限.

①求證:d(A)=d(C).

②若OC=2,且滿足d(A)+d(C)=d(B)+2,求點(diǎn)B坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片中,cm,cm。點(diǎn)邊上,將沿折疊,得,連接, .

(1)當(dāng)點(diǎn)落在邊上時(shí), ;

(2)當(dāng)點(diǎn)的中點(diǎn)時(shí),求的長(zhǎng);

(3)當(dāng)分別滿足下列條件時(shí),求相應(yīng)的的長(zhǎng):

;.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題提出 平面內(nèi)不在同一條直線上的三點(diǎn)確定一個(gè)面,那么平面內(nèi)的四點(diǎn)(任意三點(diǎn)均不在同一直線上),能否在同一個(gè)面上呢?
初步思考
設(shè)不在同一條直線上的三點(diǎn)A、B、C確定的圓為⊙O.
(1)當(dāng)C、D在線段AB的同側(cè)時(shí).
如圖①,若點(diǎn)D在⊙O上,此時(shí)有∠ACB=∠ADB,理由是
如圖②,若點(diǎn)D在⊙O內(nèi),此時(shí)有∠ACB∠ADB;
如圖③,若點(diǎn)D在⊙O外,此時(shí)有∠ACB∠ADB(填“=”、“>”、“<”)
由上面的探究,請(qǐng)直接寫出A、B、C、D四點(diǎn)在同一個(gè)圓上的條件:
類比學(xué)習(xí)
(2)仿照上面的探究思路,請(qǐng)?zhí)骄浚寒?dāng)C、D在線段AB的異側(cè)時(shí)的情形.
由上面的探究,請(qǐng)用文字語(yǔ)言直接寫出A、B、C、D四點(diǎn)在同一個(gè)圓上的條件:
拓展延伸
(3)如何過(guò)圓上一點(diǎn),僅用沒有刻度的直尺,作出已知直徑的垂線? 已知:如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,求作:CN⊥AB
作法:①連接CA、CB
②在CB上任取異于B、C的一點(diǎn)D,連接DA,DB;
③DA與CB相交于E點(diǎn),延長(zhǎng)AC、BD,交于F點(diǎn);
④連接F、E并延長(zhǎng),交直徑AB與M;
⑤連接D、M并延長(zhǎng),交⊙O于N,連接CN,則CN⊥AB.
請(qǐng)安上述作法在圖④中作圖,并說(shuō)明CN⊥AB的理由.(提示:可以利用(2)中的結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案