精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在正方形ABCD中,AB=4,P是BC邊上一動點(不含B,C兩點),將△ABP沿直線AP翻折,點B落在點E處,在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.

(1)發(fā)現:
△CMP和△BPA是否相似,若相似給出證明,若不相似說明理由;
(2)思考:
線段AM是否存在最小值?若存在求出這個最小值,若不存在,說明理由;
(3)探究:
當△ABP≌△ADN時,求BP的值是多少?

【答案】
(1)

∵∠APB=∠APE,∠MPC=∠MPN,∠CPN+∠NPB=180°,

∴2∠NPM+2∠APE=180°,

∴∠MPN+∠APE=90°,

∴∠APM=90°,

∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,

∴∠CPM=∠PAB.

又∵∠C=∠B=90°,

∴△CMP∽△BPA.


(2)

設PB=x,則CP=4﹣x.

∵△CMP∽△BPA,

,

∴CM= x(4﹣x).

如圖1所示:作MG⊥AB于G.

∵AM= =

∴AG最小值時,AM最小.

∵AG=AB﹣BG=AB﹣CM=4﹣ x(4﹣x)= (x﹣2)2+3,

∴x=2時,AG最小值=3.

∴AM的最小值= =5.


(3)

∵△ABP≌△ADN,

∴∠PAB=∠DAN,AP=AN,

又∵∠PAB=∠EAP,∠AEP=∠B=90°,

∴∠EAP=∠EAN,

∴∠PAB=∠DAN=∠EAP=∠EAN=22.5°.

如圖2:在AB上取一點K使得AK=PK,設PB=z.

∴∠KPA=∠KAP=22.5°,

∵∠PKB=∠KPA+∠KAP=45°,

∴∠BPK=∠BKP=45°,

∴PB=BK=z,AK=PK= z,

∴z+ z=4,

∴z=4 ﹣4.

∴PB=4 ﹣4.


【解析】發(fā)現:先證明∠MPA=90°,然后依據同角的余角相等可證明∠CPM=∠PAB,結合條件∠C=∠B=90°,可證明量三角形相似;
思考:設PB=x,則CP=4﹣x,依據相似三角形的性質可得到CM= x(4﹣x),作MG⊥AB于G,依據勾股定理可得到AM= ,則AG最小值時,AM最小,然后由AG=AB﹣BG=AB﹣CM得到AG與x的函數關系,依據二次函數的性質可求得當x=2時,AG最小值=3;
探究:依據全等三角形的性質和翻折的性質可得到∠PAB=∠DAN=∠EAP=∠EAN=22.5°,在AB上取一點K使得AK=PK,設PB=z.然后可證明△BPK為等腰直角三角形,故此得到PB=BK=z,AK=PK= z,最后依據AK+BK=4列出關于z的方程求解即可.
【考點精析】通過靈活運用相似三角形的判定與性質,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若數列{an}是正項數列,且 + +…+ =n2+3n(n∈N*),則 + +…+ =

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明在某商店購買商品A、B共兩次,這兩次購買商品A、B的數量和費用如表:

購買商品A的數量(個)

購買商品B的數量(個)

購買總費用(元)

第一次購物

4

3

93

第二次購物

6

6

162

若小麗需要購買3個商品A和2個商品B,則她要花費( )
A.64元
B.65元
C.66元
D.67元

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1) ﹣101+ ﹣5sin30°+(3.14﹣π)0
(2)已知m2﹣5=3m,求代數式2m2﹣6m﹣1的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1) ﹣101+ ﹣5sin30°+(3.14﹣π)0
(2)已知m2﹣5=3m,求代數式2m2﹣6m﹣1的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這20位銷售人員本月銷售量的平均數、中位數、眾數分別是(
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b的圖象與x軸交于點A,與反比例函數y= (x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數圖象上的一點,且∠PBC=∠ABC,求反比例函數和一次函數的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論: ①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當點H與點A重合時,EF=2
以上結論中,你認為正確的有 . (填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點C作CE⊥AD于E,連接BE,在點D移動的過程中,BE的取值范圍是

查看答案和解析>>

同步練習冊答案