【題目】探究規(guī)律:如圖,已知直線m∥n,A、B為直線n上的兩點(diǎn),C、P為直線m上的兩點(diǎn).
(1)請(qǐng)寫出圖中面積相等的各對(duì)三角形:
(2)如果A、B、C為三個(gè)定點(diǎn),點(diǎn)P在m上移動(dòng),那么無論P(yáng)點(diǎn)移動(dòng)到任何位置總有:與△ABC的面積相等;理由是:

【答案】
(1)△ABC與△ABP,△CPA與△CPB
(2)△ABP;等底等高的三角形的面積相等
【解析】解:(1)請(qǐng)寫出圖中面積相等的各對(duì)三角形:△ABC與△ABP,△CPA與△CPB;(2)如果A、B、C為三個(gè)定點(diǎn),點(diǎn)P在m上移動(dòng),那么無論P(yáng)點(diǎn)移動(dòng)到任何位置總有:△ABP與△ABC的面積相等;理由是:等底等高的三角形的面積相等, 所以答案是:△ABC與△ABP,△CPA與△CPB;△ABP,等底等高的三角形的面積相等.
【考點(diǎn)精析】利用平行線之間的距離和三角形的面積對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩條平行線的距離:兩條直線平行,從一條直線上的任意一點(diǎn)向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離;三角形的面積=1/2×底×高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長方形紙片與一張直角三角形紙片(∠EFG=90°)按如圖所示的位置擺放,
使直角三角形紙片的一個(gè)頂點(diǎn)E恰好落在長方形紙片的一邊AB上,已知∠BEF=21°,則
∠CMF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP,CP的延長線分別交AD于點(diǎn)E,F(xiàn),連結(jié)BD,DP,BD與CF相交于點(diǎn)H.給出下列結(jié)論: ①△ABE≌△DCF;②△DPH是等腰三角形;③PF= AB;④ =
其中正確結(jié)論的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)F為CD上一點(diǎn),BF與AC交于點(diǎn)E,∠CBF=20°.
(1)∠ACB的大小=(度);
(2)求證:△ABE≌△ADE;
(3)∠AED的大小=(度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)A在x軸上,點(diǎn)C在y軸上,且線段OA、OC(OA>OC)是方程x2﹣18x+80=0的兩根,將邊BC折疊,使點(diǎn)B落在邊OA上的點(diǎn)D處.

(1)求線段OA、OC的長;
(2)求直線CE與x軸交點(diǎn)P的坐標(biāo)及折痕CE的長;
(3)是否存在過點(diǎn)D的直線l,使直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請(qǐng)直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,P是AC,BD交于點(diǎn)O,P是ABCD外一點(diǎn),且∠APC=∠BPD=90°,求證:ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,DE⊥AB,DF⊥AC,AE=AF,則下列結(jié)論成立的是(

A.BD=CD
B.DE=DF
C.∠B=∠C
D.AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車開往距離出發(fā)地180千米的目的地,出發(fā)后第一小時(shí)內(nèi)按原計(jì)劃的速度勻速行駛,一小時(shí)后以原來速度的1.5倍勻速行駛,并比原計(jì)劃提前40分到達(dá)目的地.求前一小時(shí)的行駛速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=3x2+1向左平移1個(gè)單位,再向下平移3個(gè)單位,則所得拋物線為( 。

A. y=3x+12+2B. y=3x+122

C.y=3x32+1D.y=3x321

查看答案和解析>>

同步練習(xí)冊(cè)答案