解:①相等,
過點F作FM⊥BC于M.作FN⊥AB于N,連接BF,
∵F是角平分線交點,
∴BF也是角平分線,
∴MF=FN,∠DMF=∠ENF=90°,
∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠DAC=
∠BAC=15°,
∴∠CDA=75°,
∵∠MFC=45°,∠MFN=120°,
∴∠NFE=15°,
∴∠NEF=75°=∠MDF,
在△DMF和△ENF中,
,
∴△DMF≌△ENF(AAS),
∴FE=FD;
②成立.
過點F作FM⊥BC于M.作FN⊥AB于N,連接BF,
∵F是角平分線交點,
∴BF也是角平分線,
∴MF=FN,∠DMF=∠ENF=90°,
∴四邊形BNFM是圓內接四邊形,
∵∠ABC=60°,
∴∠MFN=180°-∠ABC=120°,
∵∠CFA=180°-(∠FAC+∠FCA)=180°-
(∠ABC+∠ACB)=180°-
(180°-∠ABC)=180°-
(180°-60°)=120°,
∴∠DFE=∠CFA=∠MFN=120°.
又∵∠MFN=∠MFD+∠DFN,∠DFE=∠DFN+∠NFE,
∴∠DFM=∠NFE,
在△DMF和△ENF中,
∴△DMF≌△ENF(ASA),
∴FE=FD.
分析:①首先過點F作FM⊥BC于M.作FN⊥AB于N,連接BF,根據角平分線的性質,可得FM=FN,又由在Rt△ABC中,∠ACB=90°,∠B=60°,求得∠NEF=75°=∠MDF,又由∠DMF=∠ENF=90°,利用AAS,即可證得△DMF≌△ENF,由全等三角形的對應邊相等,即可證得FE=FD;
②過點F作FM⊥BC于M.作FN⊥AB于N,連接BF,根據角平分線的性質,可得FN=FM,由∠ABC=60°,即可求得∠MFN=120°,∠EFD=∠AFC=120°,繼而求得∠DFM=∠DFE,利用ASA,即可證得△DMF≌△ENF,由全等三角形的對應邊相等,即可證得FE=FD.
點評:此題考查了角平分線的性質,全等三角形的判定與性質以及直角三角形的性質.此題難度較大,解題的關鍵是注意數(shù)形結合思想的應用,注意輔助線的作法.