(2008•成都)已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點.
(1)如圖①,以EF為對稱軸翻折梯形ABCD,使點B與點D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
(2)如圖②,連接EF并延長與DC的延長線交于點G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關系寫出你的結論并證明之.

【答案】分析:(1)由折疊的性質(zhì)知,BF=DF,過點A作AG⊥BC于點G.則四邊形AGFD是矩形,然后根據(jù)相似三角形的特點,利用面積公式求出.
(2)如圖,過點E作EH∥CG,交BC于點H.則∠FEH=∠FGC,可得△EFH∽△GFC.根據(jù)相似三角形和梯形的性質(zhì)解決.
解答:解:(1)由題意,有△BEF≌△DEF.
∴BF=DF
如圖,過點A作AG⊥BC于點G.則四邊形AGFD是矩形.
∴AG=DF,GF=AD=4.
在Rt△ABG和Rt△DCF中,
∵AB=DC,AG=DF,
∴Rt△ABG≌Rt△DCF.(HL)
∴BG=CF
∴BG=(BC-GF)=(8-4)=2.
∴DF=BF=BG+GF=2+4=6
∴S梯形ABCD=(AD+BC)•DF=×(4+8)×6=36

(2)猜想:CG=k•BE(或BE=CG)
證明:如圖,過點E作EH∥CG,交BC于點H.
則∠FEH=∠FGC.
又∠EFH=∠GFC,
∴△EFH∽△GFC.
,
而FG=k•EF,即
即CG=k•EH
∵EH∥CG,∴∠EHB=∠DCB.
而四邊形ABCD是等腰梯形,∴∠B=∠DCB.
∴∠B=∠EHB.∴BE=EH.
∴CG=k•BE.
點評:本題利用了:1、折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;
2、等腰梯形的性質(zhì),全等三角形和相似三角形的判定和性質(zhì)求解
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年河南省新鄉(xiāng)市第二十一中學中考數(shù)學一模試卷(解析版) 題型:填空題

(2008•成都)已知x=1是關于x的一元二次方程2x2+kx-1=0的一個根,則實數(shù)k的值是   

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(11)(解析版) 題型:解答題

(2008•成都)已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點.
(1)如圖①,以EF為對稱軸翻折梯形ABCD,使點B與點D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
(2)如圖②,連接EF并延長與DC的延長線交于點G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關系寫出你的結論并證明之.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(16)(解析版) 題型:解答題

(2008•成都)已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點.
(1)如圖①,以EF為對稱軸翻折梯形ABCD,使點B與點D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
(2)如圖②,連接EF并延長與DC的延長線交于點G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關系寫出你的結論并證明之.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷48(新灣初中 洪凱)(解析版) 題型:填空題

(2008•成都)已知y=x-1,那么x2-2xy+3y2-2的值是   

查看答案和解析>>

科目:初中數(shù)學 來源:2008年四川省成都市中考數(shù)學試卷(解析版) 題型:填空題

(2008•成都)已知x=1是關于x的一元二次方程2x2+kx-1=0的一個根,則實數(shù)k的值是   

查看答案和解析>>

同步練習冊答案