【題目】已知關(guān)于的方程有兩個不相等的實數(shù)根.

的取值范圍;

、是方程的兩個不相等的實數(shù)根,試求的值.

【答案】(1)的取值范圍為:;(2)1

【解析】

1)由關(guān)于x的方程(1+kx2﹣(2k1x+k1=0有兩個不相等的實數(shù)根即可得△>01+k0,解此不等式組即可求得答案;

2)由α、β是方程(1+kx2﹣(2k1x+k1=0的兩個不相等的實數(shù)根根據(jù)根與系數(shù)的關(guān)系,可得α+β=﹣=,αβ=,繼而求得答案

1∵關(guān)于x的方程(1+kx2﹣(2k1x+k1=0有兩個不相等的實數(shù)根,∴△=b24ac=[﹣(2k1]24×1+k×k1)=﹣4k+50k

1+k0,k1,k的取值范圍為kk1;

2∵若α、β是方程(1+kx2﹣(2k1x+k1=0的兩個不相等的實數(shù)根,α+β=﹣=,αβ=2α+2β﹣3αβ=2(α+β)﹣3αβ=2×3×====1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計者提供了一只兔子和一個有A、B、C、D、E五個出入口的兔籠,而且籠內(nèi)的兔子從每個出入口走出兔籠的機(jī)會是均等的.規(guī)定:

玩家只能將小兔從A、B兩個出入口放入;

如果小兔進(jìn)入籠子后選擇從開始進(jìn)入的出入口離開,則可獲得一只價值5元小兔玩具,否則應(yīng)付費(fèi)3元.

(1)問小美得到小兔玩具的機(jī)會有多大?

(2)假設(shè)有100人次玩此游戲,估計游戲設(shè)計者可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩名運(yùn)動員進(jìn)行射擊選撥賽,每人射擊10次,其中射擊中靶情況如表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

第九次

第十次

7

10

8

10

9

9

10

8

10

9

10

7

10

9

9

10

8

10

7

10

1)選手甲的成績的中位數(shù)是   分;選手乙的成績的眾數(shù)是   分;

2)計算選手甲的平均成績和方差;

3)已知選手乙的成績的方差是15,則成績較穩(wěn)定的是哪位選手?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等腰三角形,ABAC,點(diǎn)DAB上一點(diǎn),過點(diǎn)DDEBCBC于點(diǎn)E,交CA延長線于點(diǎn)F

1)證明:ADF是等腰三角形;

2)若∠B60°,BD4,AD2,求EC的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,現(xiàn)有邊長為1,aa>1)的一張矩形紙片ABCD,把這個矩形按要求分割,畫出分割線,并在相應(yīng)的位置上寫出a的值.

(1)把這個矩形分成兩個全等的小矩形,且分成的兩個矩形與原矩形相似.

(2)把這個和矩形分成三個矩形,且每一個矩形都與原矩形相似,給出兩種不同的分割.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));當(dāng)﹣1<x<3時,y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點(diǎn)EAC邊上一點(diǎn)AE2,當(dāng)EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABD和△BCD都是等邊三角形,E、F分別是邊ADCD上的點(diǎn),且DECF,連接BE、EF、FB

求證:(1)△ABE≌△DBF;

2)△BEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線;

(2)若BC=6,tanCDA=,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案