【題目】如圖,將30°的直角三角尺ABC繞直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到ADE的位置,使B點(diǎn)的對(duì)應(yīng)點(diǎn)D落在BC邊上,連接EB、EC,則下列結(jié)論:①∠DAC=DCA;EDAC的垂直平分線;③∠BED=30°;ED=2AB.其中正確的是( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

【答案】B

【解析】分析:先利用旋轉(zhuǎn)的性質(zhì)得到AB=AC,AC=AE,BAC=EAC則可判斷為等邊三角形,所以再計(jì)算出于是可對(duì)①進(jìn)行判斷;接著證明為等邊三角形得到 加上,則根據(jù)線段垂直平分線的判定方法可對(duì)②進(jìn)行判斷;然后根據(jù)等邊三角形的性質(zhì)得DE平分∠AEC則可對(duì)③進(jìn)行判斷;接下來(lái)證明 則利用含的直角三角形三邊的關(guān)系得到 所以 則可對(duì)④進(jìn)行判斷.

詳解:在RtABC,∵∠ACB=

∵△ABC繞直角頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)到ADE的位置,

AB=AC,AC=AE,BAC=EAC,

∴△ABD為等邊三角形,

∴∠DAC=DCA,所以①正確;

∴△AEC為等邊三角形,

EA=EC

DA=DC,

EDAC的垂直平分線,所以②正確;

DE平分∠AEC,

所以③錯(cuò)誤;

,

RtAED,

ED=2AD,

ED=2AB,所以④正確.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長(zhǎng)方形地面,觀察下列圖形,探究并解答問(wèn)題:

(1)在第4個(gè)圖中,共有白色瓷磚______塊;在第個(gè)圖中,共有白色瓷磚_____塊;

(2)試用含的代數(shù)式表示在第個(gè)圖中共有瓷磚的塊數(shù);

(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當(dāng)時(shí),求鋪設(shè)長(zhǎng)方形地面共需花多少錢購(gòu)買瓷磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中折線ABC表示從甲地向乙地打長(zhǎng)途電話時(shí)所需付的電話費(fèi)y(元)與通話時(shí)間t(分鐘)之間的關(guān)系圖象.

1)從圖象知,通話2分鐘需付的電話費(fèi)是   元;

2)當(dāng)t≥3時(shí)求出該圖象的解析式(寫(xiě)出求解過(guò)程);

3)通話7分鐘需付的電話費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AD∥BC,AB=CD,對(duì)角線CA平分∠BCD,AD=5,tanB= ,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉?lái)的一半,之后立刻恢復(fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉?lái)的兩倍,之后也立刻恢復(fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.問(wèn):

1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要多少時(shí)間?

2P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少;

3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與QB兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)圖案均由邊長(zhǎng)相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個(gè)圖案中白色正方形比黑色正方形多________個(gè).(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

1)-37

2 ;

3)-0.5+(15.5)(17)|12|;

4

5 ;

6(用簡(jiǎn)便方法計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案