【題目】在△ABC中,AB=AC,點D為直線BC上一動點(點D不與B、C重合)以AD為邊作正方形ADEF,使∠DAF=∠BAC,連接CF.
(1)如圖1,當點D在線段BC上時,求證:BD=CF;

(2)如圖2,當點D在線段BC的延長線上,且∠BAC=90°時.

①問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
②延長BA交CF于點G,連接GE,若AB=2 ,CD=BC,請求出GE的長.

【答案】
(1)

證明:菱形ADEF中,AD=AF,

∵∠BAC=∠DAF,

∴∠BAD=∠CAF,

在△DAB與△FAC中, ,

∴△DAB≌△FAC(SAS),

∴BD=CF


(2)

解:①(1)中的結(jié)論仍然成立;理由如下:

∵∠BAC=∠DAF=90°,

∴∠BAD=∠CAF

在△DAB與△FAC中, ,

∴△DAB≌△FAC(SAS),

∴BD=CF;

②過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,如圖所示:

∵∠BAC=90°,AB=AC,

∴BC= AB=4,AH=BH=HC=2,

∴CD=BC=4,

∴DH=6,CF=BD=8,

∵四邊形ADEF是正方形,

∴AD=DE,∠ADE=90°,

∵BC⊥CF,EM⊥BD,EN⊥CF,

∴四邊形CMEN是矩形,

∴NE=CM,EM=CN,

∵∠AHD=∠ADE=∠EMD=90°,

∴∠ADH+∠EDM=∠EDM+∠DEM=90°,

∴∠ADH=∠DEM,

在△ADH與△DEM中, ,

∴△ADH≌△DEM(AAS),

∴EM=DH=6,DM=AH=2,

∴CN=EM=6,EN=CM=6,

∵∠ABC=45°,

∴∠BGC=45°,

∴△BCG是等腰直角三角形,

∴CG=BC=4,

∴GN=2,

∴GE= = =2


【解析】(1)由SAS證明△DAB≌△FAC,得出對應邊相等即可;(2)①由SAS證明△DAB≌△FAC,得出對應邊相等即可;②過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,證出∠ADH=∠DEM,由AAS證明△ADH≌△DEM,得出EM=DH=6,DM=AH=2,得出CN=EM=6,EN=CM=6,證出△BCG是等腰直角三角形,得出CG=BC=4,求出GN=2,由勾股定理求出GE的長即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師出示了問題:如圖1,AC,BD是四邊形ABCD的對角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關(guān)系?
經(jīng)過思考,小明展示了一種正確的思路:如圖2,延長CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點A逆時針旋轉(zhuǎn)60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎(chǔ)上,同學們作了進一步的研究:

(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對小穎提出的問題,請你寫出結(jié)論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對小華提出的問題,請你寫出結(jié)論,不用證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B、與y軸交于點A,與反比例函數(shù)y= 的圖象在第二象限交于C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.

(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限內(nèi)的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果SBAF=4SDFO , 求點D的坐標.
(3)若動點D在反比例函數(shù)圖象的第四象限上運動,當線段DC與線段DB之差達到最大時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個正比例函數(shù)y1=k1x的圖象與一個一次函數(shù)y2=k2x+b的圖象相交于點A(3,4),且一次函數(shù)y2的圖像與y軸相交于點B(0,—5),與x軸交于點C.

(1)判斷△AOB的形狀并說明理由;

(2)請寫出當y1>y2x的取值范圍;

(3)若將直線AB繞點A旋轉(zhuǎn),使△AOC的面積為8,求旋轉(zhuǎn)后直線AB的函數(shù)解析式;

(4)在x軸上求一點P使△POA為等腰三角形,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四個圖形中,是軸對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點A(2,0)和點B,與y軸交于點C,頂點為點D,對稱軸為直線x=﹣1,點E為線段AC的中點,點F為x軸上一動點.

(1)直接寫出點B的坐標,并求出拋物線的函數(shù)關(guān)系式;
(2)當點F的橫坐標為﹣3時,線段EF上存在點H,使△CDH的周長最小,請求出點H,使△CDH的周長最小,請求出點H的坐標;
(3)在y軸左側(cè)的拋物線上是否存在點P,使以P,F(xiàn),C,D為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發(fā);設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解九年級學生的體能,從九年級學生中隨機抽取部分學生進行體能測試,測試的結(jié)果分為A、B、C、D四個等級,并根據(jù)測試成績繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次抽樣調(diào)查的樣本容量是多少?B等級的有多少人?并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,C等級對應扇形的圓心角為多少度?
(3)該校九年級學生有1500人,估計D等級的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面內(nèi)有三點A(2,2),B(5,2),C(5,

(1)請確定一個點D,使四邊形ABCD為長方形,寫出點D的坐.

(2)求這個四邊形的面積(精確到0.01).

(3)將這個四邊形向右平移2個單位,再向下平移個單位,求平移后四個頂點的坐標.

查看答案和解析>>

同步練習冊答案