【題目】如圖,拋物線與軸交于A,B兩點,與軸交于點C.
(1)請求出拋物線頂點M的坐標(用含k的代數(shù)式表示)以及A,B兩點的坐標.
(2)試探究△BCM與△ABC的面積比值是否不變,若不變,試求出這個比值;若改變,請說明理由.
【答案】(1)M(1,-4k),A(-1,0) ,B(3,0) (2)不變,
【解析】
(1)運用配方法把二次函數(shù)一般式化為頂點式,求出頂點坐標,解方程求出A、B兩點的坐標;
(2)過M作MD⊥x軸于點D,根據(jù)三角形的面積公式計算即可
(1)∵
∴拋物線頂點M坐標為(1,-4k),
∵拋物線與軸交于A.B兩點,
∴當y=0時, =0,
∵k>0,∴x2-2x-3=0
解得:x1=﹣1,x2=3,
則A.B兩點的坐標為(-1,0),(3,0);
(2)不變,
當m=0時,y=-3k,即C(0,-3k),
∴S△ABC=
過M作MD⊥x軸于點D,
則有OD=1,BD=OB-OD=2,
MD=|-4k|=4k,
S△BCM=S△BDM+S梯形OCMD-S△BOC=+
==3k
S△BCM:S△ABC=3k:6k=1:2
△BCM與△ABC的面積比不變,為1:2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k+1)x+k2﹣2=0
(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;
(2)若方程的兩個實數(shù)根為x1、x2,且滿足x12+x22=11,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC中,AB=AC,邊BC長為6,高AD長為4,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,則正方形PQMN的邊長為( 。
A.B.或
C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將寬為3cm、長為ncm的長方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長是正整數(shù)且個數(shù)最少.例如,當n=5cm時,此長方形可分割成如右圖的4個小正方形.
請回答下列問題:
(1)n=16時,可分割成幾個小正方形?
(2)當長方形被分割成20個小正方形時,求n所有可能的值;
(3)一般地,n>3時,此長方形可分割成多少個小正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖拋物線與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).B的坐標為(1,0),且OC=4OB.
(1)求點C坐標及拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求△ACD面積的最大值;
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,直接寫出P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=,將△ABC繞點A逆時針方向旋轉(zhuǎn)60°到△AB'C'的位置,則圖中陰影部分的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,進價為每件15元,規(guī)定每件商品售價不低于進價,且每天銷售量不低于90件經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(件)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,其部分數(shù)據(jù)如下表所示:
每個商品的售價x(元) | … | 30 | 40 | 50 | … |
每天的銷售量y(件) | … | 100 | 80 | 60 | … |
(1)填空:y與x之間的函數(shù)關(guān)系式是______.
(2)設(shè)商場每天獲得的總利潤為w(元),求w與x之間的函數(shù)關(guān)系式;
(3)不考慮其他因素,當商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第1個正方形的面積為____________;第n個正方形的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點A(0,3),B(﹣1,0),請解答下列問題:
(1)求拋物線的解析式;
(2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長;
(3)點F在拋物線上運動,是否存在點F,使△BFC的面積為6,如果存在,求出點F的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com