【題目】如圖1,對稱軸為直線x= 的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A

(1)求拋物線的解析式;
(2)若點P為第一象限內(nèi)拋物線上的一點,設(shè)四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】
(1)

解:由對稱性得:A(﹣1,0),

設(shè)拋物線的解析式為:y=a(x+1)(x﹣2),

把C(0,4)代入:4=﹣2a,

a=﹣2,

∴y=﹣2(x+1)(x﹣2),

∴拋物線的解析式為:y=﹣2x2+2x+4;


(2)

解:如圖1,設(shè)點P(m,﹣2m2+2m+4),過P作PD⊥x軸,垂足為D,

∴S=S梯形+SPDB= m(﹣2m2+2m+4+4)+ (﹣2m2+2m+4)(2﹣m),

S=﹣2m2+4m+4=﹣2(m﹣1)2+6,

∵﹣2<0,

∴S有最大值,則S=6;


(3)

解:如圖2,存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形,

理由是:

設(shè)直線BC的解析式為:y=kx+b,

把B(2,0)、C(0,4)代入得: ,

解得: ,

∴直線BC的解析式為:y=﹣2x+4,

設(shè)M(a,﹣2a+4),

過A作AE⊥BC,垂足為E,

則AE的解析式為:y= x+ ,

則直線BC與直線AE的交點E(1.4,1.2),

設(shè)Q(﹣x,0)(x>0),

∵AE∥QM,

∴△ABE∽△QBM,

①,

由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,

由①②得:a1=4(舍),a2=

當a= 時,x=

∴Q(﹣ ,0).


【解析】(1)由對稱軸的對稱性得出點A的坐標,由待定系數(shù)法求出拋物線的解析式;(2)作輔助線把四邊形COBP分成梯形和直角三角形,表示出面積S,化簡后是一個關(guān)于S的二次函數(shù),求最值即可;(3)畫出符合條件的Q點,只有一種,①利用平行相似得對應(yīng)高的比和對應(yīng)邊的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;兩方程式組成方程組求解并取舍.
本題是二次函數(shù)的綜合問題,綜合性較強;考查了利用待定系數(shù)法求二次函數(shù)和一次函數(shù)的解析式,并利用方程組求圖象的交點坐標,將函數(shù)和方程有機地結(jié)合,進一步把函數(shù)簡單化;同時還考查了相似的性質(zhì):在二次函數(shù)的問題中,如果利用勾股定理不能求的邊可以考慮利用相似的性質(zhì)求解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=(
A.a+b
B.a﹣2b
C.a﹣b
D.3a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是∠ABC平分線,DEAB于E,AB=36cm,BC=24cm,S△ABC =144cm2,則DE的長是( )

A. 4.8cm B. 4.5cm C. 4 cm D. 2.4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形ABC中,AB=AC,D是底邊上的中點,BE垂直AC于點E,①∠ABC=ACB;ADBC;③∠BAD=CBE;AB=2BD,其中正確的有___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,C=90°,AC=BC,過點C在ABC外作直線MN,AMMN于M,BNMN于N。

(1)求證:MN=AM+BN;

(2)若過點C在ABC內(nèi)作直線MN,AMMN于M,BNMN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車間計劃加工360個零件,由于技術(shù)上的改進,提高了工作效率,每天比原計劃多加工20%,結(jié)果提前10天完成任務(wù),求原計劃每天能加工多少個零件?

查看答案和解析>>

同步練習冊答案