(本小題滿分12分)已知:拋物線x軸交于A、B兩點,與y軸交于點C. 其中點Ax軸的負半軸上,點Cy軸的負半軸上,線段OAOC的長(OA<OC)是方程的兩個根,且拋物線的對稱軸是直線

(1)求AB、C三點的坐標(biāo);

(2)求此拋物線的解析式;

(3)若點D是線段AB上的一個動點(與點A、B不重合),過點DDEBCAC于點E,連結(jié)CD,設(shè)BD的長為m,△CDE的面積為S,求Sm的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時D點坐標(biāo);若不存在,請說明理由.

 

解:(1)∵OA、OC的長是x2-5x+4=0的根,OA<OC

OA=1,OC=4

∵點Ax軸的負半軸,點Cy軸的負半軸

A(-1,0)  C(0,-4)      

∵拋物線的對稱軸為

∴由對稱性可得B點坐標(biāo)為(3,0)

A、B、C三點坐標(biāo)分別是:A(-1,0),B(3,0),C(0,-4)

(2)∵點C(0,-4)在拋物線圖象上

A(-1,0),B(3,0)代入

解之得

∴ 所求拋物線解析式為:

(3)根據(jù)題意,,則

在Rt△OBC中,BC==5

,∴△ADE∽△ABC

過點EEFAB于點F,則sin∠EDF=sin∠CBA=

EF=DE==4-m

SCDE=SADC-SADE

=(4-m)×4(4-m)( 4-m

=m2+2m(0<m<4)

S=m-2)2+2,a=<0

∴當(dāng)m=2時,S有最大值2.

∴點D的坐標(biāo)為(1,0). 

解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級第二次模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點,根據(jù)圖中信息解答下列問題:

1.(1)寫出A點的坐標(biāo);

2.(2)求反比例函數(shù)的解析式;

3.(3)若點A繞坐標(biāo)原點O旋轉(zhuǎn)90°后得到點C,請寫出點C的坐標(biāo);并求出直線BC的解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時,旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設(shè)DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。

1.(1)問:始終與△AGC相似的三角形有                ;

2.(2)設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);

3.(3)問:當(dāng)x為何值時,△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)某班同學(xué)到野外活動,為測量一池塘兩端A、B的距離,設(shè)計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇GSJY八年級第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題

  (本小題滿分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最小.

    做法如下:作點B關(guān)于直線的對稱點,連接,與直線的交點就是所求的點P

    再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。

做法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實踐運用

   如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆湖北省孝感市七年級下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

.(本小題滿分12分)

如圖,AD為△ABC的中線,BE為△ABD的中線。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習(xí)冊答案