【題目】如圖,等邊三角形OBC的邊長(zhǎng)為10,點(diǎn)P沿O→B→C→O的方向運(yùn)動(dòng),⊙P的半徑為 . ⊙P運(yùn)動(dòng)一圈與△OBC的邊相切________次,每次相切時(shí),點(diǎn)P到等邊三角形頂點(diǎn)最近距離是________.
【答案】6 2
【解析】
分析圖形,確定⊙P在運(yùn)動(dòng)過程中與各邊相切時(shí)的情況,從而確定相切次數(shù);
根據(jù)切線的性質(zhì),由切線與圓的半徑垂直,等邊三角形的各內(nèi)角為60°,確定每次相切時(shí),點(diǎn)P的位置,利用三角函數(shù)的知識(shí)求出⊙P與各邊相切時(shí)切點(diǎn)與相鄰頂點(diǎn)的距離,問題即可解答.
在點(diǎn)P的運(yùn)動(dòng)過程中,⊙P依次與OC、BC、BO、CO、BC、OB相切,故⊙P運(yùn)動(dòng)一圈與△OBC的邊相切6次.
當(dāng)⊙P與OC相切時(shí),如圖所示,過點(diǎn)P作PA⊥CO,則
∵△OBC是等邊三角形,
∴∠COP=60°.
∴OP=PA÷sin60°=2.
同理可得:⊙P與BC相切時(shí)BP=2,⊙P與BO相切時(shí)BP=2,⊙P與CO第二次相切時(shí),CP=2,⊙P與BC第二次相切時(shí)CP=2,⊙P與OB第二次相切時(shí)OP=2.
綜上可得:⊙P與△OBC的邊相切時(shí),點(diǎn)P的位置分別是OP=2(點(diǎn)P在OB或OC上);PB=2(點(diǎn)P在OB或BC上);PC=2(點(diǎn)P在BC或OC上).
故答案為:6,2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足,
(1)求直線y=bx+c的解析式并直接寫出正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo);
(2)直線y=bx+c沿x軸正方向以每秒移動(dòng)1個(gè)單位長(zhǎng)度的速度平移,設(shè)平移的時(shí)間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,在5天中,兩臺(tái)機(jī)床每天出次品的數(shù)量如下表:
甲 | 0 | 1 | 2 | 0 | 2 |
乙 | 2 | 1 | 0 | 1 | 1 |
關(guān)于以上數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差,說法不正確的是
A. 甲、乙的平均數(shù)相等B. 甲、乙的眾數(shù)相等
C. 甲、乙的中位數(shù)相等D. 甲的方差大于乙的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=10cm,BC=16cm,∠B=90°,點(diǎn)P從點(diǎn)A開始沿著AB邊向點(diǎn)B以1cm/s的速度移動(dòng)(到B停止),點(diǎn)Q從點(diǎn)B開始沿著BC邊向點(diǎn)C以2cm/s的速度移動(dòng)(到C停止).如果P、Q分別從A、B同時(shí)出發(fā),經(jīng)過幾秒鐘,使△PBQ的面積是△ABC面積的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, AC=4.5cm. M是邊AC上的一個(gè)動(dòng)點(diǎn),連接MB,過點(diǎn)M作MB的垂線交AB于點(diǎn)N. 設(shè)AM=x cm,AN=y cm.(當(dāng)點(diǎn)M與點(diǎn)A或點(diǎn)C重合時(shí),y的值為0)
探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1) 通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組對(duì)應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 1.7 | 1.6 | 1.2 | 0 |
(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系xOy,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AN=AM時(shí),AM的長(zhǎng)度約為 cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別在AC,AB上,BD與CE相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定△ABD≌△ACE的是( )
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的2倍時(shí),則稱此三角形為“倍角三角形”,其中角稱為“倍角”.若“倍角三角形”中有一個(gè)內(nèi)角為36°,則這個(gè)“倍角三角形”的“倍角”的度數(shù)可以是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.
(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);
(2)如圖2,過點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com