精英家教網 > 初中數學 > 題目詳情
如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米.現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求這條拋物線的解析式.
分析:(1)利用現(xiàn)以O點為原點,拋物線最大高度為6米,底部寬度OM為12米,得出點M及拋物線頂點P的坐標即可;
(2)利用頂點式將P點M點代入求出拋物線解析式即可.
解答:解:(1)∵其最大高度為6米,底部寬度OM為12米,
∴點M及拋物線頂點P的坐標分別為:M(12,0),P(6,6).

(2)設拋物線解析式為:y=a(x-6)2+6,
∵拋物線y=a(x-6)2+6經過點(0,0),
∴0=a(0-6)2+6,即a=-
1
6

∴拋物線解析式為:y=-
1
6
(x-6)2+6,即y=-
1
6
x2+2x.
點評:此題主要考查了頂點式求二次函數解析式,利用數形結合得出拋物線解析式是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米.現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求這條拋物線的解析式;
(3)若要搭建一個矩形“支撐架”AD-DC-CB,使C、D點在拋物線上,A、B點在地面OM上,則這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,某公路隧道橫截面為拋物線,其最大高度6米,底部寬度OM為12米,現(xiàn)以O點為原點,OM所在的直線為x軸建立直角坐標系.
(1)求這條拋物線的解析式(不必寫x的取值范圍);
(2)若要搭建一個矩形支架AD-DC-CB(由三段組成)使C、D在拋物線上,A、B在地面OM上,則這個支架總長L的最大值是多少米?

查看答案和解析>>

科目:初中數學 來源:第20章《二次函數和反比例函數》中考題集(20):20.5 二次函數的一些應用(解析版) 題型:解答題

如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米.現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系.
(1)直接寫出點M及拋物線頂點P的坐標;
(2)求這條拋物線的解析式;
(3)若要搭建一個矩形“支撐架”AD-DC-CB,使C、D點在拋物線上,A、B點在地面OM上,則這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數學 來源:2012屆吉林省初三上學期第二次月考數學試卷 題型:解答題

如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米. 現(xiàn)以O點為原點,OM所在直線為x軸建立直角坐標系.

1.直接寫出點M及拋物線頂點P的坐標;

2.求這條拋物線的解析式;

3.若要搭建一個矩形“支撐架”AD- DC- CB,

使C、D點在拋物線上,A、B點在地面OM上,

 

查看答案和解析>>

同步練習冊答案