【題目】如圖,在邊長為的正方形網(wǎng)格中建立平面直角坐標系,已知三個頂點分別為,,.

(1)以原點為位似中心,在軸的上方畫出,使位似,且相似比為;

(2)的面積是__________平方單位;

(3)內(nèi)一點,則在內(nèi)的對應(yīng)點的坐標為________.

【答案】(1)見解析;(2)(3)

【解析】

(1)連接OB,延長OB到B1使得OB1=2OB,同法作出A1,C1,連接A1C1, B1C1, A1B1即可.
(2)兩條分割法求出三角形的面積即可.
(3)利用相似三角形的性質(zhì)解決問題即可.

解:(1)△A1B1C1即為所求.
(2))△A1B1C1的面積=4S△ABC=4(4×512×3×512×1×312×2×4)=28,
故答案為28.
(3)點P(a,b)為△ABC內(nèi)一點,則在△A1B1C1內(nèi)的對應(yīng)點P′的坐標為 (2a,2b),
故答案為 (2a,2b).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=AC,點D為直線BC上一動點(點D不與B、C重合)以AD為邊作正方形ADEF,使∠DAF=∠BAC,連接CF

(1)如圖1,當點D在線段BC上時,求證:BD=CF;

(2)如圖2,當點D在線段BC的延長線上,且∠BAC=90°時.

①問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;

②延長BACF于點G,連接GE,若AB=2CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:在1nn ≥2)這n個自然數(shù)中,每次取兩個數(shù)(不分順序),使得所取兩數(shù)之和大于n,共有多少種取法?

探究:不妨設(shè)有m種取法,為了探究mn的關(guān)系,我們先從簡單情形入手,再逐次遞進,最后猜想得出結(jié)論.

探究一:在122個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于2,有多少種取法?

根據(jù)題意,有下列取法:1+2,共1種取法.

所以,當n=2時,m=1.

探究二:在133個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于3,有多少種取法?

根據(jù)題意,有下列取法:1+3,2+3,共2種取法.

所以,當n=3時,m=2.

探究三:在144個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于4,有多少種取法?

根據(jù)題意,有下列取法:1+4,2+4,3+4,2+3,共有3+1=4種取法.

所以,當n=4時,m=3+1=4.

探究四:在155個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于5,有多少種取法?

根據(jù)題意,有下列取法:1+5, 2+5, 3+5, 4+5,2+4,3+4,共有4+2=6種不同的取法.

所以,當n=5時,m=4+2=6.

探究五:在166個自然數(shù)中,每次取兩個不同的數(shù)(不分順序),使得所取的兩個數(shù)之和大于6,有多少種不同的取法?(仿照上述探究方法,寫出解答過程)

探究六:在177個自然數(shù)中,每次取兩個不同的數(shù),使得所取的兩個數(shù)之和大于7,共有 種取法?(直接寫出結(jié)果)

不妨繼續(xù)探究n=8,9···時,mn的關(guān)系.

結(jié)論:在1nn個自然數(shù)中,每次取兩個數(shù),使得所取的兩個數(shù)字之和大于n,當n為偶數(shù)時,共有___種取法;當n為奇數(shù)時,共有___種取法;(只填最簡算式)

應(yīng)用:(1)各邊長都是自然數(shù),最大邊長為11的不等邊三角形共有

2)各邊長都是自然數(shù),最大邊長為12的三角形共有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為常數(shù))的圖象經(jīng)過點.

1)求滿足的關(guān)系式;

2)設(shè)該函數(shù)圖象的頂點坐標是,當的值變化時,求關(guān)于的函數(shù)解析式;

3)若該函數(shù)的圖象不經(jīng)過第三象限,當時,函數(shù)的最大值與最小值之差為16,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李的活魚批發(fā)店以 44 /公斤的價格從港口買進一批 2000 公斤的某品種活魚,在運輸過程中,有部分魚未能存活,小李對運到的魚進行隨機抽查,結(jié)果如表一.由于 市場調(diào)節(jié),該品種活魚的售價與日銷售量之間有一定的變化規(guī)律,表二是近一段時間該批發(fā)店的銷售記錄.

表一

所抽查的魚的總重量 m(公斤)

100

150

200

250

350

450

500

存活的魚的重量與 m 的比值

0.885

0.876

0.874

0.878

0.871

0.880

0.880

表二

該品種活魚的售價(/公斤)

50

51

52

53

54

該品神活魚的日銷售量(公斤)

400

360

320

280

240

(1)請估計運到的 2000 公斤魚中活魚的總重量;(直接寫出答案)

(2)按此市場調(diào)節(jié)的觀律,

①若該品種活魚的售價定為 52.5 /公斤,請估計日銷售量,并說明理由;

②考慮到該批發(fā)店的儲存條,小李打算 8 天內(nèi)賣完這批魚(只賣活魚),且售價保持 不變,求該批發(fā)店每日賣魚可能達到的最大利潤,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c是常數(shù),且a≠0)的圖象如圖所示,圖象與x軸交點都在點(﹣3,0)的右邊,下列結(jié)論:①b24ac,②abc0,③2a+bc0,④a+b+c0,其中正確的是( 。

A.①②B.①②④C.②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點Cy軸正半軸上的一個動點,拋物線yax25ax+4aa是常數(shù),且a0)過點C,與x軸交于點AB,點A在點B的左邊.連接AC,以AC為邊作等邊三角形ACD,點D與點O在直線AC兩側(cè).

1)求點AB的坐標;

2)當CDx軸時,求拋物線的函數(shù)表達式;

3)連接BD,當BD最短時,請直接寫出拋物線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為 2000 元,1700 元的A,B兩種型號的凈水器,下表是近兩周的銷售情況:

1)求A,B兩種型號的凈水器的銷售單價;

2)若電器公司準備用不多于 54000 元的金額采購這兩種型號的凈水器共 30 臺,求 A種型號的凈水器最多能采購多少臺?

3)在(2)的條件下,公司銷售完這 30 臺凈水器能否實現(xiàn)利潤超過12800 元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.

下面有三個推斷:

①當投擲次數(shù)是500時,計算機記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實驗次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

同步練習(xí)冊答案