【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
【答案】8﹣π
【解析】分析:
如下圖,過(guò)點(diǎn)D作DH⊥AE于點(diǎn)H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結(jié)合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長(zhǎng),即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.
詳解:
如下圖,過(guò)點(diǎn)D作DH⊥AE于點(diǎn)H,
∴∠DHE=∠AOB=90°,
∵OA=3,OB=2,
∴AB=,
由旋轉(zhuǎn)的性質(zhì)結(jié)合已知條件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,
又∵∠ABO+∠BAO=90°,
∴∠BAO=∠DEH,
∴△DEH≌△BAO,
∴DH=BO=2,
∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF
=
=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲在55的方格(每一格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),從A處出發(fā)去看望B、C、D處的甲蟲,規(guī)定:向上向右為正,向下向左為負(fù).例如:從A到B記為:(+1,+3);從C到D 記為:(+1,-2),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)填空:記為( , ), 記為( , );
(2)若甲蟲的行走路線為:,請(qǐng)你計(jì)算甲蟲走過(guò)的路程.
(3)若這只甲蟲去Q的行走路線依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請(qǐng)依次在圖2標(biāo)出點(diǎn)M、N、P、Q的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:
組號(hào) | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形圖來(lái)描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角大小;
(3)將在第一組內(nèi)的兩名選手記為:A1、A2,在第四組內(nèi)的兩名選手記為:B1、B2,從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3)、B(6,3),連接AB.如果對(duì)于平面內(nèi)一點(diǎn)P,線段AB上都存在點(diǎn)Q,使得PQ≤1,那么稱點(diǎn)P是線段AB的“附近點(diǎn)”.
(1)請(qǐng)判斷點(diǎn)D(4.5,2.5)是否是線段AB的“附近點(diǎn)”;
(2)如果點(diǎn)H (m,n)在一次函數(shù)的圖象上,且是線段AB的“附近點(diǎn)”,求m的取值范圍;
(3)如果一次函數(shù)y=x+b的圖象上至少存在一個(gè)“附近點(diǎn)”,請(qǐng)直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信運(yùn)動(dòng)和騰訊公益推出了一個(gè)愛(ài)心公益活動(dòng):一天中走路若步數(shù)達(dá)到10000步及以上,則可通過(guò)微信運(yùn)動(dòng)和騰訊基金會(huì)向公益活動(dòng)捐款,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與愛(ài)心公益捐款.
(1)某天小齊的步數(shù)為15000步,求他這天為愛(ài)心公益可捐款多少錢?
(2)己知甲、乙、丙三人某天通過(guò)步數(shù)共捐款8.4元,且甲的步數(shù):乙的步數(shù):丙的步數(shù),求這天甲走了多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,請(qǐng)回答下列問(wèn)題.
(1)A、B、C三點(diǎn)分別表示 、 、 ;
(2)將點(diǎn)B向左移動(dòng)3個(gè)單位長(zhǎng)度后,點(diǎn)B所表示的數(shù)是 ;
(3)將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度后,點(diǎn)A所表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了比較市場(chǎng)上甲、乙兩種電子鐘每日走時(shí)誤差的情況,從這兩種電子鐘中,各隨機(jī)抽取10臺(tái)進(jìn)行測(cè)試,兩種電子鐘走時(shí)誤差的數(shù)據(jù)如下表(單位:秒):
編號(hào) 類型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲種電子鐘 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙種電子鐘 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的平均數(shù);
(2) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的方差;
(3) 根據(jù)經(jīng)驗(yàn),走時(shí)穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類型的電子鐘價(jià)格相同,請(qǐng)問(wèn):你買哪種電子鐘?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點(diǎn),連接CE、DF,將△CBE沿CE對(duì)折,得到△CGE,延長(zhǎng)EG交CD的延長(zhǎng)線于點(diǎn)H。
(1)求證:CE⊥DF;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)某中學(xué)組織學(xué)生去福利院慰問(wèn),在準(zhǔn)備禮品時(shí)發(fā)現(xiàn),購(gòu)買1個(gè)甲禮品比購(gòu)買1個(gè)乙禮品多花40元,并且花費(fèi)600元購(gòu)買甲禮品和花費(fèi)360元購(gòu)買乙禮品的數(shù)量相等.
(1)求甲、乙兩種禮品的單價(jià)各為多少元?
(2)學(xué)校準(zhǔn)備購(gòu)買甲、乙兩種禮品共30個(gè)送給福利院的老人,要求購(gòu)買禮品的總費(fèi)用不超過(guò)2000元,那么最多可購(gòu)買多少個(gè)甲禮品?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com