【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、F分別在線(xiàn)段BCAB上,∠EFB=60°,DC=EF

1)求證:四邊形EFCD是平行四邊形;

2)若BF=EF,求證:AE=AD

【答案】

1】(1)證明:△ABC是等邊三角形

∴∠B=60

∵∠EFB=60,∴∠B=∠EFB∴EF∥DC……………………2

∵DC=EF,四邊形EFCD是平行四邊形…………4

2】(2)連接BE

∵BF=EF∠EFB=60

∴△EFB是等邊三角形,∴EB=EF,∠EBF=60………………6

∵DC=EF∴EB=DC

∵△ABC是等邊三角形,∴∠ACB=60AB=AC

∴∠EBF=∠ACB………………8

∴△AEB≌△ADC,∴AE=AD………………10

【解析】試題分析:(1)由△ABC是等邊三角形得到∠B=60°,而∠EFB=60°,由此可以證明EF∥DC,而DC=EF,然后即可證明四邊形EFCD是平行四邊形;

2)如圖,連接BE,由BF=EF,∠EFB=60°可以推出△EFB是等邊三角形,然后得到EB=EF,∠EBF=60°,而DC=EF,由此得到EB=DC,又

△ABC是等邊三角形,所以得到∠ACB=60°,AB=AC,然后即可證明△AEB≌△ADC,利用全等三角形的性質(zhì)就證明AE=AD

試題解析:(1∵△ABC是等邊三角形,

∴∠ABC=60°,

∵∠EFB=60°,

∴∠ABC=∠EFB,

∴EF∥DC(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行),

∵DC=EF,

四邊形EFCD是平行四邊形;

2)連接BE

∵BF=EF,∠EFB=60°,

∴△EFB是等邊三角形,

∴EB=EF,∠EBF=60°

∵DC=EF,

∴EB=DC

∵△ABC是等邊三角形,

∴∠ACB=60°AB=AC,

∴∠EBF=∠ACB

∴△AEB≌△ADC,

∴AE=AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x+y=2,xy=﹣2,則(1﹣x)(1﹣y)的值為( )
A.﹣1
B.1
C.5
D.﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(x+2)(2x﹣3)=2x2+mx﹣6,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,求出它的度數(shù).

(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線(xiàn)AB、BC上運(yùn)動(dòng),直線(xiàn)AQ、CP交點(diǎn)為M,則∠QMC變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變,直接寫(xiě)出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠BAC=60° ,B=80° ,DE垂直平分ACBC于點(diǎn)D,AC于點(diǎn)E.

(1)求∠BAD的度數(shù);

(2)AB=10,BC=12,ABD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,BC=6,延長(zhǎng)BC至點(diǎn)E,使得CE=8,點(diǎn)FDE的中點(diǎn),連接CF、OF

1)求OF的長(zhǎng)

2)求CF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是( )

A.a2·a3a6B.(a2)3=-a5

C.a10÷a9a(a≠0)D.(bc)4÷(bc)2=-b2c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:
①42﹣12=3×5;
②52﹣22=3×7;
③62﹣32=3×9;
④72﹣42=3×11;

則第n(n是正整數(shù))個(gè)等式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△DAC,△EBC均是等邊三角形,點(diǎn)A,C,B在同一條直線(xiàn)上,AE,BD分別與CD,CE交于點(diǎn)M,N,下列結(jié)論:①△ACE△DCB; ②CM=CN;③AC=DN ;④∠DAE=∠DBC.其中正確的結(jié)論有________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案