【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸是,且經(jīng)過A(﹣4,0),C0,2)兩點,直線ly=kx+tk≠0)經(jīng)過A,C

1)求拋物線和直線l的解析式;

2)點P是直線AC上方的拋物線上一個動點,過點PPDx軸于點D,交AC于點E,過點PPFAC,垂足為F,當PEFAED時,求出點P的坐標;

3)在拋物線的對稱軸上是否存在點Q,使ACQ為等腰三角形?若存在,直接寫出所有滿足條件的Q點的坐標;若不存在,請說明理由.

【答案】1,;(2;(3)存在,Q的坐標為:

【解析】

1)把點AC的坐標和對稱軸表達式代入二次函數(shù)表達式,即可求解;

2PEn2n+2n2DEn+2,sinEAD=sinCAO,,則AEDEn+2),當△PEF≌△AED時,PE=AE,n22nn+2),即可求解;

3)等腰三角形分A為頂角頂點、以C為頂角頂點、點Q為頂角頂點,三種情況分別求解即可.

1)把點A、C的坐標和對稱軸表達式代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:yx2x+2;

同理把點A、C坐標代入直線l表達式并解得:yx+2

2)設(shè)P點坐標為(n,n2n+2),∴E點坐標為(n,n+2),∴PEn2n+2n2DEn+2

A(﹣4,0),C0,2),OA=4,OC=2,AC=2

PDx軸于點D,∴∠ADE=90°,∴sinEAD=sinCAO,,∴AEDEn+2),當△PEF≌△AED時,PE=AE,n22nn+2),解得:n=4(舍去﹣4),∴n=,∴P,);

3)存在,理由如下:

①以A為頂角頂點,AQ=AC,由(2)知AC=2,若設(shè)對稱軸與x軸交于點G,則AG(﹣4

GQ1=GQ2,故點Q1Q2的坐標分別為(,)、();

②以C為頂角頂點,CQ=CA=2,過點Cx軸的平行線,交拋物線的對稱軸于點M,則M,2),則CM,MQ3Q3G=2,Q4G=2,故Q3、Q4坐標分別為(2)、(,2);

③以點Q為頂角頂點時,同理可得點Q5,0);

故點Q的坐標為:(,)或(,)或(,2)或(,2)或(,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:

成績(分)

60

70

80

90

100

人數(shù)(人)

1

5

x

y

2

(1)如果這20名女生體育成績的平均分數(shù)是82分,求x、y的值;

(2)(1)的條件下,設(shè)20名學生測試成績的眾數(shù)是a,中位數(shù)是b,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=BC,點OAC的中點,點PAC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.

(1)如圖1,請直接寫出線段OEOF的數(shù)量關(guān)系;

(2)如圖2,當∠ABC=90°時,請判斷線段OEOF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由

(3)若|CF﹣AE|=2,EF=2,當POF為等腰三角形時,請直接寫出線段OP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是半圓O上一個動點,AB為半圓的直徑,D是弧BC的中點,過點D作半圓O的切線DEAC的延長線于點E

1)求證:AEDE;

2已知CE=2,DE=4,則AB=   

連接OC,DC,當BAC=   度時,四邊形OBDC為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x,A坐標為(1,0),過點Ax軸的垂線交直線于點,以原點O為圓心,OB 長為半徑畫弧交x軸于點A;再過點Ax軸的垂線交直線于點B,以原點O為圓心,OB 長為半徑畫弧交x軸于點A ,…,按此做法進行下去,A 的坐標為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OABC的邊OCx軸正半軸上,點B的坐標為(8,4).

1)請求出菱形的邊長;

2)若反比例函數(shù) 經(jīng)過菱形對角線的交點D,且與邊BC交于點E,請求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又剩下一個四邊形,稱為第二次操作;…依此類推,若第n次操作后,余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,例如:如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準菱形.

(1)理解與判斷:

鄰邊長分別為1和3的平行四邊形是   階準菱形;

鄰邊長分別為3和4的平行四邊形是   階準菱形;

(2)操作、探究與計算:

①已知ABCD的鄰邊長分別為2,a(a>2),且是3階準菱形,請畫出ABCD及裁剪線的示意圖,并在圖形下方寫出a的值;

②已知ABCD的鄰邊長分別為a,b(a>b),滿足a=7b+r,b=4r,請寫出ABCD是幾階準菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)科所在相同條件下做某種作物種子發(fā)芽率的試驗,結(jié)果如下表所示:

種子個數(shù)n

1000

1500

2500

4000

8000

15000

20000

30000

發(fā)芽種子個數(shù)m

899

1365

2245

3644

7272

13680

18160

27300

發(fā)芽種子頻率

0899

0910

0898

0911

0909

0912

0908

0910

一般地,該種作物種子中大約有多少是不能發(fā)芽的?

查看答案和解析>>

同步練習冊答案