【題目】已知點P(3﹣3a,1﹣2a)在第四象限,則a的取值范圍在數(shù)軸上表示正確的是(
A.
B.
C.
D.

【答案】C
【解析】解:∵點P(3﹣3a,1﹣2a)在第四象限, ∴
解不等式①得:a<1;
解不等式②得:a>
∴a的取值范圍為 <a<1.
故選C.
【考點精析】根據(jù)題目的已知條件,利用不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法的相關(guān)知識可以得到問題的答案,需要掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,DEBC,垂足為點E,連接ACDE于點F,點GAF的中點,∠ACD=2ACB.若DG=3EC=1,則DE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點Q為坐標(biāo)系上任意一點,某圖形上的所有點在∠Q的內(nèi)部(含角的邊),這時我們把∠Q的最小角叫做該圖形的視角.如圖1,矩形ABCD,作射線OA,OB,則稱∠AOB為矩形ABCD的視角.
(1)如圖1,矩形ABCD,A(﹣ ,1),B( ,1),C( ,3),D(﹣ ,3),直接寫出視角∠AOB的度數(shù);
(2)在(1)的條件下,在射線CB上有一點Q,使得矩形ABCD的視角∠AQB=60°,求點Q的坐標(biāo);
(3)如圖2,⊙P的半徑為1,點P(1, ),點Q在x軸上,且⊙P的視角∠EQF的度數(shù)大于60°,若Q(a,0),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,點Bx軸上,且

求點B的坐標(biāo);

的面積;

y軸上是否存在P,使以A、B、P三點為頂點的三角形的面積為10?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,我市某中學(xué)課外活動小組的同學(xué)利用所學(xué)知識去測量釜溪河沙灣段的寬度.小宇同學(xué)在A處觀測對岸C點,測得∠CAD=45°,小英同學(xué)在距A處50米遠的B處測得∠CBD=30°,請你根據(jù)這些數(shù)據(jù)算出河寬.(精確到0.01米,參考數(shù)據(jù) ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,AOB的三個頂點均在格點上,點A、B的坐標(biāo)分別為(32)、(1,3)AOB繞點O逆時針旋轉(zhuǎn)90后得到A1OB1

1)在網(wǎng)格中畫出A1OB1,并標(biāo)上字母;

2)點A關(guān)于O點中心對稱的點的坐標(biāo)為___________;

3)點A1的坐標(biāo)為________

4A1OB1的面積為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按下列條件得到的四邊形EFGH不一定是平行四邊形的是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.

(1)求足球和籃球的單價各是多少元?

(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

同步練習(xí)冊答案