【題目】仔細閱讀下面的例題:
例題:已知二次三項式x2-4x+m有一個因式是x+3,求另一個因式以及m的值.
解:設(shè)另一個因式為x+n,則
x2-4x+m=(x+3)(x+n),
∴x2-4x+m=x2+(n+3)x+3n,
∴,解得,
∴另一個因式為x-7,m的值為-21.
問題:仿照以上方法解答下面的問題:
已知二次三項式2x2+3x-k有一個因式是2x-5,求另一個因式以及k的值.
【答案】設(shè)另一個因式為(x+a),得x2+3x﹣k=(2x﹣5)(x+a),則2x2+3x﹣k=2x2+(2a﹣5)x﹣5a,∴,解得:a=4,k=20,故另一個因式為(x+4),k的值為20.
【解析】
根據(jù)例題中的已知的兩個式子的關(guān)系,兩個中二次三項式x2﹣4x+m的二次項系數(shù)是1,因式是(x+3)的一次項系數(shù)也是1,利用待定系數(shù)法求出另一個因式.所求的式子2x2+3x﹣k的二次項系數(shù)是2,因式是(2x﹣5)的一次項系數(shù)是2,則另一個因式的一次項系數(shù)一定是1,利用待定系數(shù)法,就可以求出另一個因式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-x+2與x軸、y軸分別交于點A和點B,另一直線y=kx+b(k≠0)經(jīng)過點C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1∶5,求k和b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2= (x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為一工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責(zé)處理).當(dāng)每噸售價為260元時,月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設(shè)每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該經(jīng)銷店要獲得最大月利潤,售價應(yīng)定為每噸多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+c(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳果品店在批發(fā)市場購買某種水果銷售,第一次用1200元購進若干千克,并以每千克8元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1452元所購買的數(shù)量比第一次多20千克,以每千克9元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價50%售完剩余的水果.
(1)求第一次水果的進價是每千克多少元?
(2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b輛,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運貨物多少噸?
(2)請幫助物流公司設(shè)計租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com