【題目】如圖,正方形ABCD中,BE=EF=FCCG=2GD,BG分別交AE,AFM,N.下列結(jié)論:①AFBG;②BN=NF;③;④.其中正確的結(jié)論的序號(hào)是______

【答案】①③.

【解析】

易證△ABF≌△BCG,即可解題;

易證△BNF∽△BCG,即可求得的值,即可解題;

③作EH⊥AF,令AB=3,即可求得MN,BM的值,即可解題;

④連接AG,F(xiàn)G,根據(jù)③中結(jié)論即可求得S四邊形CGNFS四邊形ANGD,即可解題.

①∵四邊形ABCD為正方形,

∴AB=BC=CD,

∵BE=EF=FC,CG=2GD,

∴BF=CG,

∵在△ABF和△BCG中,

,

∴△ABF≌△BCG,

∴∠BAF=∠CBG,

∵∠BAF+∠BFA=90°,

∴∠CBG+∠BFA=90°,即AF⊥BG;①正確;

②∵在△BNF和△BCG中,∠CBG=∠NBF,∠BCG=∠BNF=90°,

∴△BNF∽△BCG,

,

∴BN=NF;②錯(cuò)誤;

③作EH⊥AF,令AB=3,則BF=2,BE=EF=CF=1,

AF==,

∵SABF=AFBN=ABBF,

∴BN=,NF=BN=

∴AN=AF-NF=,

∵EBF中點(diǎn),

∴EH是△BFN的中位線,

∴EH=,NH=,BN∥EH,

∴AH=,

,解得:MN=,

∴BM=BN-MN=,MG=BG-BM=,

;③正確;

④連接AG,F(xiàn)G,根據(jù)③中結(jié)論,

NG=BG-BN=

∵S四邊形CGNF=SCFG+SGNF=CGCF+NFNG=1+=,

S四邊形ANGD=SANG+SADG=ANGN+ADDG=,

∴S四邊形CGNFS四邊形ANGD,④錯(cuò)誤.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=2mx2+(1﹣4m)x+2m﹣1,下列結(jié)論錯(cuò)誤的是(  )

A. 當(dāng)m=0時(shí),yx的增大而增大

B. 當(dāng)m=時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,﹣

C. 當(dāng)m=﹣1時(shí),若x<,則yx的增大而減小

D. 無(wú)論m取何值,函數(shù)圖象都經(jīng)過(guò)同一個(gè)點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線交于點(diǎn),順次聯(lián)結(jié)ABCD各邊中點(diǎn)得到的一個(gè)新的四邊形,如果添加下列四個(gè)條件中的一個(gè)條件:①;②;③;④,可以使這個(gè)新的四邊形成為矩形,那么這樣的條件個(gè)數(shù)是()

A. 1個(gè);B. 2個(gè);

C. 3個(gè);D. 4個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某通訊運(yùn)營(yíng)商的手機(jī)上網(wǎng)流量資費(fèi)標(biāo)準(zhǔn)推出了三種優(yōu)惠方案:

方案A:按流量計(jì)費(fèi),0.1元/M

方案B:20元流量套餐包月,包含500M流量,如果超過(guò)500M,超過(guò)部分另外計(jì)費(fèi)(見圖象),如果用到1000M時(shí),超過(guò)1000M的流量不再收費(fèi);

方案C:120元包月,無(wú)限制使用.

x表示每月上網(wǎng)流量(單位:M),y表示每月的流量費(fèi)用(單位:元),方案B和方案C對(duì)應(yīng)的y關(guān)于x的函數(shù)圖象如圖所示,請(qǐng)解決以下問(wèn)題:

(1)寫出方案A的函數(shù)解析式,并在圖中畫出其圖象;

(2)直接寫出方案B的函數(shù)解析式;

(3)若甲乙兩人每月使用流量分別在300600M,8001200M之間,請(qǐng)你分別給出甲乙二人經(jīng)濟(jì)合理的選擇方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一筆直的海岸線上有兩個(gè)觀測(cè)站,的正東方向,千米,在某一時(shí)刻,從觀測(cè)站測(cè)得一艘集裝箱貨船位于北偏西處,同時(shí)觀測(cè)站測(cè)得改集裝箱船位于北偏西方向,問(wèn)此時(shí)該集裝箱船與海岸之間距離約多少千米?(最后結(jié)果保留整數(shù))

(參考數(shù)據(jù):,,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是   ;

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線為直線上兩點(diǎn),為直線上兩點(diǎn).

1)如果固定點(diǎn),點(diǎn)在直線上移動(dòng),那么不論點(diǎn)移動(dòng)到何處,總有_____的面積相等,理由是_________________

2)如果處在如圖所示位置,請(qǐng)寫出另外兩對(duì)面積相等的三角形:①_________________;②_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的半徑為4,BO外一點(diǎn),連接OB,且OB=6,過(guò)點(diǎn)BO的切線BD,切點(diǎn)為D,延長(zhǎng)BOO于點(diǎn)A,過(guò)點(diǎn)A作切線BD的垂線,垂足為C

1)求證:AD平分BAC

2)求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A03)、B3,4)、C2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

1ABC向下平移4個(gè)單位長(zhǎng)度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是 ;

2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為21,點(diǎn)C2的坐標(biāo)是 ;(畫出圖形)

3A2B2C2的面積是 平方單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案