【題目】在直線上依次擺放著七個(gè)正方形(如圖所示),已知斜放置的三個(gè)正方形的面積分別是1、2、3,正放置的四個(gè)正方形的面積依次是,_______.

【答案】2

【解析】

首先通過等角轉(zhuǎn)換,即可得出∠BAC=DCE,∠ACB=CED,即可判定△ABC≌△CDE,進(jìn)而得出AB=CD,BC=DE,再利用勾股定理,即可得出,同理可證,,即可得解.

解:∵在△ABC和△CDE中,

BAC+BCA=ECD+CDE=90°,ACB+ECD=90°

∴∠BAC=DCE,ACB=CED

又∵AC=CE

∴△ABC≌△CDE

AB=CD,BC=DE,

AB2+DE2=DE2+CD2=CE2=3,

即為

同理可證,

故答案為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對(duì)角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請(qǐng)說明理由;

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郵遞員騎車從郵局出發(fā),先向西騎行 2 km 到達(dá) A 村,繼續(xù)向西騎行 3 km 到達(dá) B 村, 然后向東騎行 9 km 到達(dá) C 村,最后回到郵局.

(1)以郵局為原點(diǎn),以向東方向?yàn)檎较颍?/span> 1 cm 表示 1 km 畫數(shù)軸,并在該數(shù)軸上表示 A,B,C 三個(gè)村莊的位置;

(2)C 村離 A 村有多遠(yuǎn)?

(3)郵遞員一共騎行了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快遞員開摩托車從總部A點(diǎn)出發(fā),在一條南北公路上來回收取包裹,現(xiàn)在記錄下他連續(xù)行駛的情況(以向南為正方向,單位:千米):5,2,-4,,3,-2.5,6.請(qǐng)問

1)他最后一次收取包裹后在出發(fā)點(diǎn)A的什么位置?

2)如果摩托車每千米耗油30毫升,出發(fā)前摩托車有油1000毫升,快遞員在收完包裹后能回到總部嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是4,DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是ADAE上的動(dòng)點(diǎn),則DQ+PQ的最小值( 。

A、2

B、4

C、

D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動(dòng)是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào),用戶可以通過關(guān)注微信運(yùn)動(dòng)公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和其他用戶進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.甲、乙兩人開啟了微信運(yùn)動(dòng),沿湖邊環(huán)形道上勻速跑步,已知乙的步距比甲的步距少(步距是指每一步的距離),兩人各跑了圈,跑圈前后的時(shí)刻和步數(shù)如下:

出發(fā)時(shí)刻

出發(fā)時(shí)微信運(yùn)動(dòng)中顯示的步數(shù)

結(jié)束時(shí)刻

結(jié)束時(shí)微信運(yùn)動(dòng)中顯示的步數(shù)

(1)求甲、乙的步距和環(huán)形道的周長(zhǎng);

(2)若每分鐘甲比乙多跑步,求表中的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,觀察數(shù)軸,請(qǐng)回答:

(1)點(diǎn)與點(diǎn)的距離為 ,點(diǎn)與點(diǎn)的距離為 ;

點(diǎn)與點(diǎn)的距離為 ,點(diǎn)與點(diǎn)的距離為 ;

(2)發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)與點(diǎn)分別表示數(shù),則它們之間的距離可表示為 (表示);

(3)利用發(fā)現(xiàn)的結(jié)論,逆向思維解決下列問題:

①數(shù)軸上表示的點(diǎn)之間的距離是,則的值是 ;

,則

③數(shù)軸上是否存在表示的點(diǎn),使點(diǎn)到點(diǎn)、點(diǎn)的距離之和為?若存在,請(qǐng)求出的值;若不存在,說明理由;

的最小值為 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包荒山若干畝,種果樹2000棵.今年水果總產(chǎn)量為18000千克,此水果在市場(chǎng)上每千克售元,在果園每千克售.該農(nóng)戶將水果拉到市場(chǎng)出售平均每天出售1000千克,需8人幫忙,每人每天付工資25元,農(nóng)用車運(yùn)費(fèi)及其他各項(xiàng)稅費(fèi)平均每天100元.

1)分別用表示兩種方式出售水果的收入.

2)若元,元,且兩種方式都在相同的時(shí)間內(nèi)售完全部水果,請(qǐng)你通過計(jì)算說明選擇哪種出售方式較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,點(diǎn)分別為的中點(diǎn),則線段

查看答案和解析>>

同步練習(xí)冊(cè)答案