【題目】如圖,在等邊三角形△ABC中,DAB上的點(diǎn),EBC延長(zhǎng)線上一點(diǎn),且.求證:EB=AD.

【答案】見解析

【解析】

由平行線的性質(zhì)得出∠ADF=ABC,∠AFD=ACB,∠FDC=DCE,由△ABC是等邊三角形,得出∠ABC=ACB=60°,證出△ADF是等邊三角形,∠DFC=120°,得出AD=DF,由已知條件得出∠FDC=DECED=CD,由AAS證明△DBE≌△CFD,得出EB=DF,即可得出結(jié)論.

證明:作DF∥BCACF,如圖所示:

∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,

△ABC是等邊三角形,

∴∠ABC=∠ACB=60°,

∴∠DBE=120°∠ADF=∠AFD=60°=∠A,

∴△ADF是等邊三角形,∠DFC=120°,

∴AD=DF,

∵∠DEC=∠DCE

∴∠FDC=∠DEC,ED=CD,

△DBE△CFD中,

,

∴△DBE≌△CFDAAS),

∴EB=DF,

∴EB=AD;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)探索發(fā)現(xiàn):如圖1,已知RtABC中,∠ACB90°,ACBC,直線l過點(diǎn)C,過點(diǎn)AADl,過點(diǎn)BBEl,垂足分別為D、E.求證:ADCE,CDBE

2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).

3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQP點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担瑢(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-2+2=+2,又∵≥0, +2≥0+ 2,即a+b ≥2

(1)根據(jù)上述內(nèi)容,回答下列問題:在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥ 2,當(dāng)且僅當(dāng)a、b滿足________時(shí),a+b有最小值2

(2)思考驗(yàn)證:如圖1,ABC中,∠ACB=90°,CDAB,垂足為D,COAB邊上中線,AD=2a ,DB=2b, 試根據(jù)圖形驗(yàn)證a+b≥2成立,并指出等號(hào)成立時(shí)的條件.

(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連接DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的垂直平分線于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個(gè)產(chǎn)品銷售點(diǎn)在經(jīng)銷時(shí)發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價(jià)1元,日銷售量將減少2箱.

(1)現(xiàn)該銷售點(diǎn)每天盈利600元,同時(shí)又要顧客得到實(shí)惠,那么每箱產(chǎn)品應(yīng)漲價(jià)多少元?

(2)若該銷售點(diǎn)單純從經(jīng)濟(jì)角度考慮,每箱產(chǎn)品應(yīng)漲價(jià)多少元才能獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),ECOBEDOA,CD是垂足,連接CD,且交OE于點(diǎn)F.

1)求證:DF=CF.

2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F、G、H分別在它的四條邊上,且四邊形EFGH是什么特殊四邊形?你是如何判斷的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ADBC邊上的高,CE平分∠ACB,ADCE相交于點(diǎn)F.B=65°,∠AFC=120°,求∠BAD和∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,ΔDCE都是等邊三角形,且B,C,E在同一條直線上,連接BDAC交于點(diǎn)M,連接AECD交于點(diǎn)N,BDAE交于點(diǎn)O.給出下列五個(gè)結(jié)論:①CDAB;②BD=AE;③CM=CN;④AO=OE;⑤∠AOD=120°.則其中正確結(jié)論有( )

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案