【題目】如圖,在四邊形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四邊形ABCD的面積.
【答案】36.
【解析】試題分析:連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.
解:連接AC,如圖所示:
∵∠B=90°,
∴△ABC為直角三角形,
又∵AB=3,BC=4,
∴根據(jù)勾股定理得:AC==5,
又∵CD=12,AD=13,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.
故四邊形ABCD的面積是36.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點,連接OB,且OB=6,過點B作⊙O的切線BD,切點為D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】希望工程義演出售兩種票,成人票每張10元,兒童票每張6元,共賣出1000張票,如果成人票賣了x張,出售兒童票共收入的錢數(shù)為( )
A. (1000-x)元 B. 6(1000-x)元 C. 6x元 D. 10(1000-x)元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組中的四條線段成比例的是( 。
A.a=1,b=3,c=2,d=4
B.a=4,b=6,c=5,d=10
C.a=2,b=4,c=3,d=6
D.a=2,b=3,c=4,d=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B分別表示的數(shù)是6、﹣12,M、N、P為數(shù)軸上三個動點,它們同時都向右運動.點M從點A出發(fā),速度為每秒2個單位長度,點N從點B出發(fā),速度為點M的3倍,點P從原點出發(fā),速度為每秒1個單位長度.
(1)當運動3秒時,點M、N、P分別表示的數(shù)是 、 、 ;
(2)求運動多少秒時,點P到點M、N的距離相等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com