【題目】如圖, AD 為△ ABC 的中線, BE 為△ ABD 的中線.

(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度數(shù);

(2)作△ BED 的邊 BD 邊上的高;

(3)若△ ABC 的面積為 20, BD=2.5,求△ BDE BD 邊上的高.

【答案】(1)∠BAD =40°;(2)詳見解析;(3)BD=2.5.

【解析】

(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式進(jìn)行計算即可得解;

(2)根據(jù)高線的定義,過點EBD的垂線即可得解;

(3)根據(jù)三角形的中線把三角形分成的兩個三角形面積相等,先求出BDE的面積,再根據(jù)三角形的面積公式計算即可.

(1)在ABE中,∵∠ABE=15°,BAD=40°

∴∠BED=ABE+BAD=15°+40°=55°;

(2)如圖,EFBD邊上的高;

(3)ADABC的中線,BEABD的中線,

SABD=SABC,SBDE=SABD,SBDE=

SABC,

∵△ABC的面積為20,BD=2.5,

SBDE=BDEF=×5EF=×20,解得EF=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,點D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點F.
(2)由(1)得:BF與邊AC的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級(3)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進(jìn)價為30元/件,設(shè)該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20


(1)求出w與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天的銷售利潤最大?并求出最大利潤;
(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D AB 邊上的中點,將△ABC 沿過點 D 的直線折疊,DE 為折痕,使點 A 落在 BC F處,若∠B=40°,則∠EDF=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運(yùn)動的時間為x秒(0<x≤3),解答下列問題:

(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(﹣ ,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當(dāng)點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,點PAC邊上的一點,延長BP至點D,使得AD=AP,當(dāng)ADAB時,過DDEACE,AB-BC=4,AC=8,則△ABP面積為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ACB中,∠BAC=90°AB=AC,分別過BC兩點作過點A的直線l的垂線,垂足為D、E

1)如圖1,當(dāng)D、E兩點在直線BC的同側(cè)時,猜想,BD、CEDE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.

2)如圖(2),將(1)中的條件改為:在△ABC中,AB=ACD、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)如圖3∠BAC=90°,AB=25AC=35.點PB點出發(fā)沿B→A→C路徑向終點C運(yùn)動;點QC點出發(fā)沿C→A→B路徑向終點B運(yùn)動.點PQ分別以每秒23個單位的速度同時開始運(yùn)動,只要有一點到達(dá)相應(yīng)的終點時兩點同時停止運(yùn)動;在運(yùn)動過程中,分別過PQPF⊥lF,QG⊥lG.問:點P運(yùn)動多少秒時,△PFA△QAG全等?(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案