【題目】甲同學(xué)在拼圖探索活動中發(fā)現(xiàn),用4個形狀大小完全相同的直角三角形(直角邊長分別為a,b,斜邊長為c),可以拼成像如圖1那樣的正方形,并由此得出了關(guān)于a2,b2,c2的一個等式.

1)請你寫出這一結(jié)論:______,并給出驗證過程.

2)試用上述結(jié)論解決問題:如圖2,PRtABC斜邊AB上的一個動點,已知AC=5,AB=13,求PC的最小值.

【答案】(1) a2+b2=c2;(2)PC的最小值為.

【解析】

1)結(jié)論:a2+b2=c2,根據(jù)三角形、矩形、正方形的面積公式求解即可;

2)根據(jù)勾股定理求出BC的長,當CPAB時,PC最短,即可求出PC的最小值.

1)結(jié)論:a2+b2=c2

驗證:∵四個三角形的面積=4×=2ab

四個三角形的面積=邊長為的正方形面積-邊長為的正方形面積=a+b2-c2,

∴(a+b2-c2=2ab

a2+b2=c2

2)∵RtABC中,AC=5AB=13,

52+BC2=132,

解得BC=12

CPAB時,PC最短,

此時,BC×AC=AB×PC,

PC==

PC的最小值為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊三角形空地上種草皮綠化,已知AB20米,AC30米,∠A150°,草皮的售價為a/2,則購買草皮至少需要( 。

A. 450a B. 225a C. 150a D. 300a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB=90°,AC=12.點D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點分別為F,G.

(1)如圖,點D在線段CB上,四邊形ACDE是正方形.

①若點GDE中點,求FG的長.

②若DG=GF,求BC的長.

(2)已知BC=9,是否存在點D,使得DFG是等腰三角形?若存在,求該三角形的腰長;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準備對收費作如下調(diào)整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費.具體收費標準如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計車費

0

0.5

0.9

1.5

同時,就此收費方案隨機調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調(diào)整后,此運營商在該校投放A品牌共享單車能否獲利? 說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1;

2)(-2a323a3+6a12÷-2a3);

3)(x+1)(x-2-x-22

4)(a+2b+3)(a+2b-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQBC相交于F,若AD8 cmAB6 cm,AE4cm,則EBF的周長是______________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標有數(shù)字12的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成3個相等的扇形,并分別標有數(shù)字﹣1,34(如圖所示),小明把卡片背面朝上洗勻后從中隨機抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針所在區(qū)域內(nèi)的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域內(nèi)為止).

1)請用列表法或畫樹形圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;

2)求出兩個數(shù)字之積為負數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系 中,直線 軸,軸分別交于點 ,點

1)求點和點的坐標;

2)若點 軸上,且 求點的坐標。

3)在軸是否存在點 ,使三角形 是等腰三角形,若存在。請求出點坐標,若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案