【題目】如圖,△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經(jīng)過點E,交BC于點F.
(1)求證:AC是⊙O的切線;
(2)已知∠A=30°,⊙O的半徑為4,求圖中陰影部分的面積.
【答案】(1)見解析;(2)
【解析】
(1)連接OE.根據(jù)OB=OE得到∠OBE=∠OEB,然后再根據(jù)BE是△ABC的角平分線得到∠OEB=∠EBC,從而判定OE∥BC,最后根據(jù)∠C=90°得到∠AEO=∠C=90°證得結論AC是⊙O的切線.
(2)連接OF,利用S陰影部分=S梯形OECF﹣S扇形EOF求解即可.
解:(1)連接OE.
∵OB=OE
∴∠OBE=∠OEB
∵BE是∠ABC的角平分線
∴∠OBE=∠EBC
∴∠OEB=∠EBC
∴OE∥BC
∵∠C=90°
∴∠AEO=∠C=90°
∴AC是⊙O的切線;
(2)連接OF.
∵∠A=30°,⊙O的半徑為4,
∴AO=2OE=8,
∴AE=4 ,∠AOE=60°,
∴AB=12,
∴BC=AB=6,AC=6,
∴CE=AC﹣AE=2.
∵OB=OF,∠ABC=60°,
∴△OBF是正三角形.
∴∠FOB=60°,CF=6﹣4=2,
∴∠EOF=60°.
∴S梯形OECF==6.
S扇形EOF= =,
∴S陰影部分=S梯形OECF﹣S扇形EOF=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,正方形ABCD繞點A(0,6)旋轉,當點B落在x軸上時,點C剛好落在反比例函數(shù)(k≠0,x>0)的圖像上.已知sin∠OAB=.
(1)求反比例函數(shù)的表達式;
(2)反比例函數(shù)的圖像是否經(jīng)過AD邊的中點,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點,且為雙曲線上的一點,為坐標平面上一動點,垂直于軸,垂直于軸,垂足分別是、.
(1)寫出正比例函數(shù)和反比例函數(shù)的關系式.
(2)當點在直線上運動時,直線上是否存在這樣的點,使得與的面積相等?如果存在,請求出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,對于任意的三個點A、B、C,給出如下定義:若矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的“三點矩形”.在點A,B,C的所有“三點矩形”中,若存在面積最小的矩形,則稱該矩形為點A,B,C的“最佳三點矩形”.
如圖1,矩形DEFG,矩形IJCH都是點A,B,C的“三點矩形”,矩形IJCH是點A,B,C的“最佳三點矩形”.
如圖2,已知M(4,1),N(﹣2,3),點P(m,n).
(1)①若m=1,n=4,則點M,N,P的“最佳三點矩形”的周長為 ,面積為 ;
②若m=1,點M,N,P的“最佳三點矩形”的面積為24,求n的值;
(2)若點P在直線y=﹣2x+4上.
①求點M,N,P的“最佳三點矩形”面積的最小值及此時m的取值范圍;
②當點M,N,P的“最佳三點矩形”為正方形時,求點P的坐標;
(3)若點P(m,n)在拋物線y=ax2+bx+c上,且當點M,N,P的“最佳三點矩形”面積為12時,﹣2≤m≤﹣1或1≤m≤3,直接寫出拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,是的外接圓,過點作交于點,連接交于點,延長至點,使,連接.
(1)求證:;
(2)求證:是的切線;
(3)如圖2,若點是的內(nèi)心,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣1,),以原點O為中心,將點A順時針旋轉150°得到點A′,則點A′的坐標為( )
A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 為滿足社區(qū)居民健身的需要,市政府準備采購若干套健身器材免費提供給社區(qū),經(jīng)考察,勁松公司有兩種型號的健身器可供選擇.
(1)勁松公司2015年每套型健身器的售價為萬元,經(jīng)過連續(xù)兩年降價,2017年每套售價為 萬元,求每套型健身器年平均下降率 ;
(2)2017年市政府經(jīng)過招標,決定年內(nèi)采購并安裝勁松公司兩種型號的健身器材共套,采購專項費總計不超過萬元,采購合同規(guī)定:每套型健身器售價為萬元,每套型健身器售價我 萬元.
①型健身器最多可購買多少套?
②安裝完成后,若每套型和型健身器一年的養(yǎng)護費分別是購買價的 和 .市政府計劃支出 萬元進行養(yǎng)護.問該計劃支出能否滿足一年的養(yǎng)護需要?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線a交AB于點D,交AC于點E,若∠1=145°,則∠2的度數(shù)是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關系,其部分圖象如圖所示.
(1)求y關于x的函數(shù)關系式;(不需要寫定義域)
(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com