【題目】如圖,△ABC中,BE是它的角平分線,∠C90°,DAB邊上,以DB為直徑的半圓O經(jīng)過點E,交BC于點F

1)求證:ACO的切線;

2)已知∠A30°,O的半徑為4,求圖中陰影部分的面積.

【答案】1)見解析;(2

【解析】

1)連接OE.根據(jù)OBOE得到∠OBE=∠OEB,然后再根據(jù)BEABC的角平分線得到∠OEB=∠EBC,從而判定OEBC,最后根據(jù)∠C90°得到∠AEO=∠C90°證得結論AC是⊙O的切線.

2)連接OF,利用S陰影部分S梯形OECFS扇形EOF求解即可.

解:(1)連接OE

OBOE

∴∠OBE=∠OEB

BE是∠ABC的角平分線

∴∠OBE=∠EBC

∴∠OEB=∠EBC

OEBC

∵∠C90°

∴∠AEO=∠C90°

AC是⊙O的切線;

2)連接OF

∵∠A30°,⊙O的半徑為4,

AO2OE8

AE4 ,∠AOE60°,

AB12,

BCAB6,AC6,

CEACAE2

OBOF,∠ABC60°

∴△OBF是正三角形.

∴∠FOB60°,CF642,

∴∠EOF60°

S梯形OECF6

S扇形EOF ,

S陰影部分S梯形OECFS扇形EOF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,正方形ABCD繞點A06)旋轉,當點B落在x軸上時,點C剛好落在反比例函數(shù)k≠0,x0)的圖像上.已知sinOAB.

1)求反比例函數(shù)的表達式;

2)反比例函數(shù)的圖像是否經(jīng)過AD邊的中點,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點,且為雙曲線上的一點,為坐標平面上一動點,垂直于軸,垂直于軸,垂足分別是.

1)寫出正比例函數(shù)和反比例函數(shù)的關系式.

2)當點在直線上運動時,直線上是否存在這樣的點,使得的面積相等?如果存在,請求出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,對于任意的三個點A、BC,給出如下定義:若矩形的任何一條邊均與某條坐標軸平行,且AB,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的“三點矩形”.在點AB,C的所有“三點矩形”中,若存在面積最小的矩形,則稱該矩形為點A,B,C的“最佳三點矩形”.

如圖1,矩形DEFG,矩形IJCH都是點AB,C的“三點矩形”,矩形IJCH是點A,BC的“最佳三點矩形”.

如圖2,已知M41),N(﹣2,3),點Pm,n).

1m1n4,則點M,NP的“最佳三點矩形”的周長為   ,面積為   

m1,點M,N,P的“最佳三點矩形”的面積為24,求n的值;

2)若點P在直線y=﹣2x+4上.

求點M,NP的“最佳三點矩形”面積的最小值及此時m的取值范圍;

當點MN,P的“最佳三點矩形”為正方形時,求點P的坐標;

3)若點Pm,n)在拋物線yax2+bx+c上,且當點MN,P的“最佳三點矩形”面積為12時,﹣2m≤﹣11m3,直接寫出拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,,的外接圓,過點于點,連接于點,延長至點,使,連接.

1)求證:;

2)求證:的切線;

3)如圖2,若點的內(nèi)心,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(1),以原點O為中心,將點A順時針旋轉150°得到點A′,則點A′的坐標為( )

A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 滿足社區(qū)居民健身的需要,市政府準備采購若干套健身器材免費提供給社區(qū),經(jīng)考察,公司兩種型號的健身器可供選擇.

(1)松公司2015年每套健身器的售價為萬元,經(jīng)過連續(xù)兩年降價,2017年每售價 萬元,求每型健身器年平均下降 ;

(2)2017年市政府經(jīng)過招標,決定年內(nèi)采購安裝松公司兩種型號的健身器材,采購專項費總計不超過萬元,采購合同規(guī)定:每套健身器售價為萬元,每套健身器售價 萬元.

型健身器最多可購買多少套?

安裝完成后,若每套型和健身器一年的養(yǎng)護費分別是購買價的 .政府計劃支出 萬元進行養(yǎng)護.問該計劃支出能否滿足一年的養(yǎng)護需要?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線aAB于點D,交AC于點E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關系,其部分圖象如圖所示.

(1)求y關于x的函數(shù)關系式;(不需要寫定義域)

(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?

查看答案和解析>>

同步練習冊答案