【答案】
分析:①,延長AO交圓于點N,連接BN,可證明∠ABO=∠HBC.因此①正確;
②原式可寫成
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/0.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/1.png)
,無法直接用相似來求出,那么可通過相等的比例關系式來進行轉換,不難發(fā)現三角形BEC中,∠ABC=60°,那么BC和BE存在倍數關系,即BC=2BE,因此如果證得
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/2.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/3.png)
,可發(fā)現這個比例關系式正好是相似三角形BEH和BAF的兩組對應線段,因此本題的結論也是正確的.
③要證MB=BD,先看與BD相等的線段有哪些,不難通過相似三角形ABN和BFC(一組直角,∠OBA=∠OAB=∠FBC)得出
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/4.png)
,將這個結論和②的結論進行置換即可得出:BD=BO=BH=BG,因此可證MB和圓的半徑相等即可得出BM=BD的結論.如果連接NC,在三角形ANC中∠ANC=∠ABC=60°,因此AN=2NC,NC就是半徑的長.通過相似三角形BME和CAE可得出
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/5.png)
,而在直角三角形BEC中,BE:EC=tan30°,而在直角三角形ANC中,NC:AC=tan30°,因此
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/6.png)
,即可得出BM=NC=BO=BD.因此該結論也成立.
④在③中已經得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結論也成立.
因此四個結論都成立,
解答:![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/images7.png)
解:①延長AO交圓于點N,連接BN,則∠ABN=90°,又∠ACB=∠N,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正確;
②原式可寫成
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/7.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/8.png)
,∠ABC=60°,那么BC=2BE,因此
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/9.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/10.png)
,所以本題的結論也是正確的.
③∵△ABN∽△BFC(一組直角,∠OBA=∠OAB=∠FBC)∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/11.png)
,BD=BO=BH=BG,BM=BD.
連接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,
在直角三角形ANC中,NC:AC=tan30°,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103101707493945584/SYS201311031017074939455024_DA/12.png)
,∴BM=NC=BO=BD.
因此該結論也成立.
④在③中已經得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等邊三角形.本結論也成立.
因此四個結論都成立,
故選D.
點評:本題中線段較多,要找準和已知,所求的條件相關的線段,然后逐一梳理思路,通過相似三角形來進行求解.