【題目】如圖,在RtABC中,∠B90°,AC60cm,∠A60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是ts.過點DDFBC于點F,連接DE、EF

1)求證:AEDF;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

3)當t為何值時,△DEF為直角三角形?請說明理由.

【答案】1)見解析;(2)能,10;(3)當t時△DEF是直角三角形(∠EDF90°);當t12時,△DEF是直角三角形(∠DEF90°

【解析】

1)利用t表示出CD以及AE的長,然后在直角△CDF中,利用直角三角形的性質(zhì)求得DF的長,即可證明;

2)易證四邊形AEFD是平行四邊形,當ADAE時,四邊形AEFD是菱形,據(jù)此即可列方程求得t的值;

3)分別從∠EDF90°與∠DEF90°兩種情況討論即可求解.

1)證明:∵在RtABC中,∠B90°,AC60cm,∠A60°,

∴∠C90°﹣∠A30°

CD4tcm,AE2tcm,

又∵在直角△CDF中,∠C30°

DFCD2tcm,

DFAE

2)能,

DFAB,DFAE,

∴四邊形AEFD是平行四邊形,

ADAE時,四邊形AEFD是菱形,

604t2t,

解得:t10,

即當t10時,AEFD是菱形;

3)解:當t時△DEF是直角三角形(∠EDF90°);

t12時,△DEF是直角三角形(∠DEF90°).

理由如下:

當∠EDF90°時,DEBC,

∴∠ADE=∠C30°

AD2AE

CD4tcm,

DFAE2tcm

AD2AE4tcm,

4t+4t60

t時,∠EDF90°

當∠DEF90°時,DEEF,

∵四邊形AEFD是平行四邊形,

ADEF,

DEAD,

∴△ADE是直角三角形,∠ADE90°,

∵∠A60°,

∴∠DEA30°,

ADAE,

ADACCD604tcm),AEDFCD2tcm,

AD=tcm,

604tt

解得t12

綜上所述,當t時△DEF是直角三角形(∠EDF90°);當t12時,△DEF是直角三角形(∠DEF90°).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列解題過程:

計算:(-5)÷×20.

解:原式=(-5)÷×20 (第一步)

=(-5)÷(-1) (第二步)

=-5.   (第三步)

(1)上述解題過程中有兩處錯誤:

第一處是第________錯誤的原因是__________________________;

第二處是第________錯誤的原因是_______________________

(2)把正確的解題過程寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.

請你根據(jù)上面提供的信息回答下列問題:

(1)扇形圖中跳繩部分的扇形圓心角為__________度,該班共有學(xué)生__________人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是__________.

(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】股民吉姆上星期買進某公司月股票股,每股元,下表為本周內(nèi)每日該股的漲跌情況(星期六、日股市休市)(單位:元)

星期

每股漲跌

+1.5

0.7

1.2

+2

1.8

1)星期三收盤時,每股是多少元?

2)本周內(nèi)每股最高價多少元?最低價是多少元?

3)已知吉姆買進股票時付了的手續(xù)費,賣出時還需付成交額的手續(xù)費和的交易稅,如果吉姆在星期五收盤前將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O是矩形ABCD的對角線的交點,作DE//AC,CE//BDDE、CE相交于點E

求證:(1)四邊形OCED是菱形.

2)連接OE,若AD=5,CD=3,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點的坐標是,則點的坐標是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為B(1,3),與軸的交點A在點 (2,0)和(3,0)之間.以下結(jié)論:

;;;⑤若,且

.其中正確的結(jié)論有

A. 4 B. 3個 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究函數(shù)y=|x|-1的性質(zhì).

小凡同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=|x|-1的圖象與性質(zhì)進行了探究.下面是小凡的探究過程,請補充完整:

1)在函數(shù)y=|x|-1中,自變量x的取值范圍是______________

2)下表是yx的幾組對應(yīng)值.

m=_________;

②若An9),B10,9)為該函數(shù)圖象上不同的兩點,則n=__________;

3)如下圖,在平面直角坐標系xOy中,描出以上表中各對對應(yīng)值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;

4)結(jié)合函數(shù)圖象,解決問題:

①該函數(shù)有______(最大值最小值”);并寫出這個值為______

②觀察函數(shù)y=|x|-1的圖象,寫出該圖象的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1 2(2a 2 9b) 3(3a 2 4b)

2(a 2 b2)(a b)( a b)

3 ( x 2y 3 )2 (3xy)3 (x 2 y 3)2 ( x)3 2 y 3

4)用簡便方法計算:9982 9980 16

查看答案和解析>>

同步練習(xí)冊答案