【題目】如圖,已知ADBC,ABBC,AB=3. 點(diǎn)E為射線BC上一個動點(diǎn),連接AE,將ABE沿AE折疊,點(diǎn)B落在點(diǎn)B處,過點(diǎn)B作AD的垂線,分別交AD,BC于點(diǎn)M,N. 當(dāng)點(diǎn)B為線段MN的三等分點(diǎn)時,BE的長為__________________.

【答案】.

【解析】

試題分析:根據(jù)題意可得四邊形ABNM是矩形,所以AB=MN=3,AM=BN,根據(jù)折疊的性質(zhì)可得AB=AB,BE=BE,點(diǎn)B為線段MN的三等分點(diǎn)時,分兩種情況:當(dāng)MB=1,BN=2時,在RtAMB中,由勾股定理求得AM=,設(shè)BE==BE=x,在RtENB中,由勾股定理可得,解得x=;當(dāng)MB=2,BN=1時,在RtAMB中,由勾股定理求得AM=,設(shè)BE==BE=x,在RtENB中,由勾股定理可得,解得x=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一次函數(shù)y2x+2的圖象向下平移2個單位長度,得到相應(yīng)的函數(shù)表達(dá)式為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價和售價如下表所示:

A

B

進(jìn)價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價 - 進(jìn)價)×銷售量)

(1)該商場計劃購進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進(jìn)數(shù)量,增加B種設(shè)備的購進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進(jìn)這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進(jìn)數(shù)量至多減少多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,3),在坐標(biāo)軸上找一點(diǎn)P,使得△AOP是等腰三角形,則這樣的點(diǎn)P共有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】|x﹣2|+(y﹣1)2=0,則﹣yx的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD 中,AB=3,BC=4E,F 是對角線 AC上的兩個動點(diǎn),分別從 A,C 同時出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動時間為 t 秒,當(dāng)其中一個動點(diǎn)到達(dá)后就停止運(yùn)動.

1)若 G,H 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.

2)在(1)條件下,當(dāng) t 為何值時,四邊形 EGFH 為矩形.

3)若 G,H 分別是折線 A﹣B﹣CC﹣D﹣A 上的動點(diǎn),與 EF 相同的速度同時出發(fā),當(dāng) t 為何值時,四邊形 EGFH 為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個數(shù)的相反數(shù)是非負(fù)數(shù),這個數(shù)是(
A.負(fù)數(shù)
B.非負(fù)數(shù)
C.正數(shù)
D.非正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y2x24kx+1.當(dāng)xl時,yx的增大而減小,則k的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】xy,則下列式子中錯誤的是(

A.3x>﹣3yB.3x3yC.x3y3D.x+3y+3

查看答案和解析>>

同步練習(xí)冊答案