【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過(guò)點(diǎn)D作DE∥AB交CA的延長(zhǎng)線于點(diǎn)E,連接AD,BD.
(1)由AB,BD, 圍成的曲邊三角形的面積是;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長(zhǎng).

【答案】
(1) +
(2)解:由(1)知∠AOD=90°,即OD⊥AB,

∵DE∥AB,

∴OD⊥DE,

∴DE是⊙O的切線;


(3)解:∵AB=10、AC=6,

∴BC= =8,

過(guò)點(diǎn)A作AF⊥DE于點(diǎn)F,則四邊形AODF是正方形,

∴AF=OD=FD=5,

∴∠EAF=90°﹣∠CAB=∠ABC,

∴tan∠EAF=tan∠CBA,

= ,即 = ,

,

∴DE=DF+EF= +5=


【解析】解:(1)如圖,連接OD,
∵AB是直徑,且AB=10,
∴∠ACB=90°,AO=BO=DO=5,
∵CD平分∠ACB,
∴∠ABD=∠ACD= ∠ACB=45°,
∴∠AOD=90°,
則曲邊三角形的面積是S扇形AOD+S△BOD= + ×5×5= + ,
所以答案是: + ;
【考點(diǎn)精析】關(guān)于本題考查的垂徑定理和扇形面積計(jì)算公式,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(3,2)、B(3,5)、C(1,2).

(1)在平面直角坐標(biāo)系中畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2 , 點(diǎn)C2在AB上.
①旋轉(zhuǎn)角為多少度?
②寫出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一農(nóng)戶要建一個(gè)矩形豬舍,豬舍的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門,所圍矩形豬舍的長(zhǎng)、寬分別為多少時(shí),豬舍面積為80m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a、b是任意兩個(gè)實(shí)數(shù),用max{a,b}表示a、b兩數(shù)中較大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,參照上面的材料,解答下列問(wèn)題:
(1)max{5,2}= , max{0,3}=
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范圍;
(3)求函數(shù)y=x2﹣2x﹣4與y=﹣x+2的圖象的交點(diǎn)坐標(biāo),函數(shù)y=x2﹣2x﹣4的圖象如圖所示,請(qǐng)你在圖中作出函數(shù)y=﹣x+2的圖象,并根據(jù)圖象直接寫出max{﹣x+2,x2﹣2x﹣4}的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將直線y=﹣x沿y軸向下平移后的直線恰好經(jīng)過(guò)點(diǎn)A(2,﹣4),且與y軸交于點(diǎn)B,在x軸上存在一點(diǎn)P使得PA+PB的值最小,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(﹣2)2+ ﹣(﹣ 0
(2)(2x+1)(2x﹣1)﹣4(x+1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一長(zhǎng)度為10的線段AC的兩個(gè)端點(diǎn)A、C分別在y軸和x軸的正半軸上滑動(dòng),以A為直角頂點(diǎn),AC為直角邊在第一象限內(nèi)作等腰直角△ABC,連接BO.
(1)求OB的最大值;
(2)在AC滑動(dòng)過(guò)程中,△OBC能否恰好為等腰三角形?若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(4,﹣2),B(0,2),C(a,﹣a),a為實(shí)數(shù),當(dāng)△ABC的周長(zhǎng)最小時(shí),a的值是( )
A.﹣1
B.0
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過(guò)BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長(zhǎng)線相交于點(diǎn)H.
(1)求證:△BEF≌△CEH;
(2)求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案