如圖,在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點,點D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點P.有下列結論:
①∠DEO=45°;
②△AOD≌△COE;
③S四邊形CDOE =S△ABC;
④.
其中正確的結論序號為 .(把你認為正確的都寫上)
①②③④.
解析試題分析:證△AOD≌△COE,推出OD=OE,即可判斷①②;根據(jù)全等得出兩三角洲的面積相等,即可推出△ACB的面積=四邊形CDOE的面積的2倍,即可判斷③;證△OEP∽△OCE,得出比例式,即可判斷④.
試題解析::∵在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點,
∴∠A=∠B=∠ACO=°,OA=OC=OB,∠AOC=90°=∠DOE,
∴∠AOD=∠COE=90°-∠DOC,
在△AOD與△COE中,
∴△AOD≌△COE(ASA),
∴OD=OE,
∵∠EOD=90°,
∴∠DEO=45°,
∵△AOD≌△COE,∴S△AOD=S△COE,
∴S四邊形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,
∵△DOE為等腰直角三角形,
∴∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴,即OP•OC=OE2,
即①②③④都正確;
考點:1.全等三角形的判定與性質;2.等腰直角三角形;3.相似三角形的判定與性質.
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖ΔABC中,D、E、F分別是AB、AC、BC的中點.
(1)若AB=10cm,AC=6cm,則四邊形ADFE的周長為______cm
(2)若ΔABC周長為6cm,面積為12cm2,則ΔDEF的周長是 _____,面積是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經過反彈后,球剛好彈到D點位置.
(1)求證:△BEF∽△CDF;
(2)求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,點P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.
(1)求證:△APB≌△APD;
(2)已知DF∶FA=1∶2,設線段DP的長為x,線段PF的長為y.
①求y與x的函數(shù)關系式;
②當x=6時,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,在△ABC中,點D是BC中點,點E是AC中點,且AD⊥BC,BE⊥AC, BE,AD相交于點G,過點B作BF∥AC交AD的延長線于點F, DF="6."
(1) 求AE的長;
(2) 求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在Rt△ABC中,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,
且DM⊥DN,作MF⊥AB于點F,NE⊥AB于點E。
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC。
①如圖2,若D為AB中點,(1)中的兩個結論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關系并加以證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在□ABCD中,AB=4,AD=6,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=.
(1)求AE的長; (2)求ΔCEF的周長和面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(1)如圖1,在等邊△ABC中,點M是邊BC上的任意一點(不含端點B、C),聯(lián)結AM,以AM為邊作等邊△AMN,聯(lián)結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是邊BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是邊BC上的任意一點(不含端點B、C),聯(lián)結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.聯(lián)結CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com