(2003•桂林)如圖,AC=6,B是AC上的一點,分別以AB、BC、AC為直徑作半圓,過點B作BD⊥AC,交半圓于點D,設(shè)以AB為直徑的圓的圓心為O1,半徑為r1;以BC為直徑的圓的圓心為O2,半徑為r2
(1)求證:BD2=4r1r2;
(2)以AC所在的直線為x軸,BD所在直線為y軸建立直角坐標系,如果r1:r2=1:2,求經(jīng)過A、D、C三點的拋物線的函數(shù)解析式;
(3)如果(2)所確定的拋物線與以AC為直徑的半圓交于另一點E,已知P為上的動點(P與A、E點不重合),連接弦CP交EO2于F點,設(shè)CF=x,CP=y,求y與x的函數(shù)解析式,并確定自變量x的取值范圍.

【答案】分析:(1)在以AC為直徑的半圓中,連接AD、CD,則∠ADC=90°,根據(jù)射影定理即可得出所求的結(jié)論.
(2)根據(jù)r1:r2=1:2,可知AB:BC=1:2.AC=6,因此AB=2,BC=4.根據(jù)射影定理可求得OD=2,由此可得出A、C、D三點坐標,用待定系數(shù)法即可求出拋物線的解析式.
(3)連接AP,則∠APC=90°,可通過證△CO2F∽△CAP來得出y,x的函數(shù)關(guān)系式.
解答:(1)證明:連接AD、DC.
在Rt△ADC中,BD⊥AC
∴DB2=AB•BC
∵AB=2r1,BC=2r2,
∴DB2=4r1r2

(2)解:∵r1:r2=1:2,且2r1+2r2=6
∴r1=1,r2=2
即DB=2
所以A(-2,0)、C(4,0)、D(0,2
因此設(shè)拋物線為y=a(x+2)(x-4)
解得a=-
所求拋物線解析式為y=-x2+x+2;

(3)解:由(2)可求拋物線的對稱軸為x=1
∵拋物線與半圓的另一個交點E應(yīng)為D點關(guān)于x=1的對稱點
∴利用對稱性可求得E(2,2
連接PE、EC
由已知可得O2(2,0),故EO2⊥x軸
由垂徑定理可知∠P=∠CEO2
(或連接AE,利用∠P=∠EAC=∠CEO2
∴△ECP∽△FCE

故EC2=FC•CP
設(shè)CF=x,CP=y
又在Rt△CEO2中CE2=EO22+O2C2=(22+22=12
(或利用EC2=CO2•CA=2×6=12)
∴xy=12,y=(2<x<2).
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圓周角定理、三角形相似、垂徑定理、圓與圓的位置關(guān)系等知識點,綜合性較強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•桂林)如圖,AC=6,B是AC上的一點,分別以AB、BC、AC為直徑作半圓,過點B作BD⊥AC,交半圓于點D,設(shè)以AB為直徑的圓的圓心為O1,半徑為r1;以BC為直徑的圓的圓心為O2,半徑為r2
(1)求證:BD2=4r1r2
(2)以AC所在的直線為x軸,BD所在直線為y軸建立直角坐標系,如果r1:r2=1:2,求經(jīng)過A、D、C三點的拋物線的函數(shù)解析式;
(3)如果(2)所確定的拋物線與以AC為直徑的半圓交于另一點E,已知P為上的動點(P與A、E點不重合),連接弦CP交EO2于F點,設(shè)CF=x,CP=y,求y與x的函數(shù)解析式,并確定自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:填空題

(2003•桂林)如圖,在Rt△ABC中,∠C=90°,AB=10,AC=6,那么tanB=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•桂林)如圖,順次連接矩形ABCD各邊中點,得到菱形EFGH.這個由矩形和菱形所組成的圖形( )

A.是軸對稱圖形但不是中心對稱圖形
B.是中心對稱圖形但不是軸對稱圖形
C.既是軸對稱圖形又是中心對稱圖形
D.沒有對稱性

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年廣西桂林市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•桂林)如圖,在⊙O中,A、B、C三點在圓上,且∠CBD=60°,那么∠AOC=    度.

查看答案和解析>>

同步練習(xí)冊答案