(1)如圖,四邊形ABCD是正方形,△ADF旋轉一定角度后得到△ABE,如果AF=4,AB=7:
①寫出圖中的旋轉過程;
②求BE的長;
③在圖中作出延長BE與DF的交點G,并說明BG⊥DF.
(2)如圖,將三角尺ABC(其中∠ABC=60°,∠C=90°)繞點B按順時針轉動一個角度到A1BC1的位置,使得點A、B、C1在同一條直線上,那么這個角度等于______.
A.120°B.90°C.60°D.30°.
(1)①△ADF順時針方向旋轉90°后得到△ABE;

②∵△ADF旋轉一定角度后得到△ABE,
∴AF=AE=4,
由勾股定理得,BE=
AE2+AB2
=
42+72
=
65
;

③如圖,∵△ADF順時針方向旋轉90°后得到△ABE,
∴∠F=∠AEB,
∵∠AEB+∠ABE=180°-90°=90°,
∴∠F+∠ABE=90°,
∴∠BGF=90°,
∴BG⊥DF;

(2)∵∠ABC=60°,
∴∠CBC1=180°-60°=120°,
∴旋轉角為120°.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形OABC在直角坐標系xOy中,點A、C分別在x軸、y軸的正半軸上,點O在坐標原點.等腰直角三角板OEF的直角頂點O在原點,E、F分別在OA、OC上,且OA=4,OE=2.將三角板OEF繞O點逆時針旋轉至OE1F1的位置,連接CF1、AE1
(1)求證:△OAE1≌△OCF1;
(2)若三角板OEF繞O點逆時針旋轉一周,是否存在某一位置,使得OECF?若存在,請求出此時E點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在等腰Rt△ABC中,∠A=90°,AC=9,點O在AC上,且AO=2,點P是AB上一動點,連接OP將線段OP繞O逆時針旋轉90°得到線段OD,要使點D恰好落在BC上,則AP的長度等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

圖(1)按______方向旋轉______度可與本身重合.圖(2)按______方向旋轉______度可與本身重合.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在8×8的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,已知A(2,4),B(4,2).C是第一象限內的一個格點,由點C與線段AB組成一個以AB為底,且腰長為無理數(shù)的等腰三角形.
(1)填空:C點的坐標是______,△ABC的面積是______;
(2)將△ABC繞點C旋轉180°得到△A1B1C1,連接AB1、BA1,試判斷四邊形AB1A1B是何種特殊四邊形,請說明理由;
(3)請?zhí)骄浚涸趚軸上是否存在這樣的點P,使四邊形ABOP的面積等于△ABC面積的2倍?若存在,請直接寫出點P的坐標(不必寫出解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知A(-3,1),B(-1,2),C(-2,3)
(1)將△ABC向右平移5個單位,再向下平移5個單位,畫出平移后的△A1B1C1
(2)畫出△ABC關于直線x=1對稱圖形△A2B2C2;
(3)將△ABC繞原點逆時針旋轉90°,畫出旋轉后的△A3B3C3,并求出A點對應點A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,E點是正方形ABCD的邊BC上一點,AB=12,BE=5,△ABE逆時針旋轉后能夠與△ADF重合.
(1)旋轉中心是______,旋轉角為______度;
(2)△AEF是______三角形;
(3)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC與△ADE都是等腰直角三角形,∠ACB和∠E都是直角,點C在AD邊上,BC=
2
,把△ABC繞點A按順時針方向旋轉n度后恰好與△ADE重合,則n的值是______,點C經(jīng)過的路線的長是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知在平行四邊形ABCD中,AB⊥AC,對角線AC,BD交于點O,將直線AC繞點O順時針旋轉,分別交BC,AD于點E,F(xiàn).
(1)證明:當旋轉角為90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉過程中,線段AF與EC總保持相等.

查看答案和解析>>

同步練習冊答案