【題目】益文超市銷售某種電器,其成本為每件80元,1月份的銷售額為20000元,2月份益文超市對這種電器的售價打9折銷售,結(jié)果銷售量增加了50件,銷售額增加了7000元(銷售額=銷售量×售價).
(1)求該電器1月份的銷售單價;
(2)3月份為“獻愛心月”,益文超市在1月份的基礎(chǔ)上打折促銷(但不虧本),銷售的數(shù)量y(件)與打折的折數(shù)x滿足一次函數(shù)y=﹣50x+600,試求益文超市打幾折時利潤最大,最大利潤是多少?
(3)在(2)的條件下,益文超市發(fā)現(xiàn)打n折銷售時,3月份的利潤與按1月份銷售的利潤相同,求n的值.
【答案】(1)200元;(2)16000元;(3)n=6.
【解析】
(1)設(shè)1月份的銷售單價為a元,銷量為b件,根據(jù)1月的銷售額(銷售額=銷售量×售價)為20000元,2月份商場對這種童裝售價打9折銷售,結(jié)果銷售量增加了50件,銷售額增加了7000元,列方程組求解即可;
(2)根據(jù)利潤=銷售量×單件利潤列函數(shù)表達(dá)式,根據(jù)二次函數(shù)性質(zhì)求最大值;
(3)根據(jù)3月份打m折銷售時,其利潤與原價銷售的利潤相同,列方程求解.
解:(1)設(shè)1月份的銷售單價為a元,銷量為b件,
則 ab=20000, a(b+50)=27000,
解得a=200,b=100.
答:1月份的銷售單價為200元.
(2)設(shè)利潤為W,則W═(×200﹣80)(﹣50x+600),
=﹣1000x2+16000x﹣48000=﹣1000(x﹣8)2+16000,
∵﹣1000<0,
∴當(dāng)x=8時,W最大,值為16000,
答:當(dāng)商場打8折時,利潤最大,最大利潤為16000元;
(3)由(1)知3月份利潤為100(200﹣80)=12000元,
依題意:(×200﹣80)(﹣50n+600)=12000,
解得n1=10(舍),n2=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連接AP并延長AP交CD于F點,連接CP并延長CP交AD于Q點.給出以下結(jié)論:①四邊形AECF為平行四邊形;②∠PBA=∠APQ;③△FPC為等腰三角形;④△APB≌△EPC;其中正確結(jié)論的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點P和圖形G,給出如下定義:在圖形G上若存在兩點M、N,使△PMN為正三角形,則稱圖形G為點P的T型線,點P為圖形G的T型點,△PMN為圖形G關(guān)于點P的T型三角形.若H(0,﹣2)是拋物線y=x2+n的T型點,則n的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價為260元時,月銷售量為45噸.該建材店為提高經(jīng)營利潤,準(zhǔn)備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設(shè)每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當(dāng)每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價應(yīng)定為每噸多少元?
(4)小靜說:“當(dāng)月利潤最大時,月銷售額也最大.”你認(rèn)為對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1: .小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.
(1)求坡角∠BCD;
(2)求旗桿AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點C作CE⊥AD于E,連接BE,在點D移動的過程中,BE的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=x+的圖象與性質(zhì)進行了探究.
下面是小明的探究過程,請補充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是_____.
(2)下表列出了y與x的幾組對應(yīng)值,請寫出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請完成:
①當(dāng)y=﹣時,x=_____.
②寫出該函數(shù)的一條性質(zhì)_____.
③若方程x+=t有兩個不相等的實數(shù)根,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC是矩形ABCD的對角線,AC的垂直平分線EF分別交BC、AD于點E和F,EF交AC于點O.
(1)求證:四邊形AECF是菱形;
(2)若AC=8,EF=6,求菱形的邊長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com