【題目】已知二次函數(shù)的圖象如圖所示,給出以下結(jié)論:①a+b+c0;②a-b+c0;③b+2a0;④abc0,其中正確的個(gè)數(shù)是(

A.1B.2C.3D.4

【答案】B

【解析】

①據(jù)當(dāng)x=1時(shí)圖象在x軸下方,得出y0,即a+b+c0判斷即可;

②據(jù)當(dāng)x=-1時(shí)圖象在x軸上方,得出y0,即a-b+c0判斷即可;

③據(jù)對(duì)稱軸1,得出2a+b0進(jìn)行判斷;

④由圖象開口向上判斷出a0,由對(duì)稱軸在y軸右側(cè)得出b0,由拋物線與y軸交于負(fù)半軸,c0判斷即可.

解:①當(dāng)x=1時(shí)圖象在x軸下方時(shí),y0

a+b+c0,①正確;

②當(dāng)x=-1時(shí)圖象在x軸上方,y0,

a-b+c0,②錯(cuò)誤;

③由拋物線的開口向上知a0,

1,

2a+b0,③錯(cuò)誤;

④∵圖象開口向上,

a0,

∵對(duì)稱軸在y軸右側(cè)

b0

∵拋物線與y軸交于負(fù)半軸,

c0,

abc0,④正確,

∴正確的結(jié)論有2個(gè);

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是由若干個(gè)小圓圈堆成的一個(gè)形如等邊三角形的圖案,最上面一層有一個(gè)圓圈,

以下各層均比上一層多一個(gè)圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以

算出圖1中所有圓圈的個(gè)數(shù)為123n

如果圖中的圓圈共有13層,請解決下列問題:

1)我們自上往下,在每個(gè)圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)12,34,……,則最底層最左

邊這個(gè)圓圈中的數(shù)是 ;

2)我們自上往下,在每個(gè)圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20,……,求

最底層最右邊圓圈內(nèi)的數(shù)是_______;

3)求圖4中所有圓圈中各數(shù)的絕對(duì)值之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是(  )

A. 2cm B. 2.5cm C. 3cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如下表:

年級(jí)

六年級(jí)

七年級(jí)

八年級(jí)

九年級(jí)

男生

250

z

254

258

女生

x

244

y

252

若從全校學(xué)生中任意抽取一名,抽到六年級(jí)女生的概率是0.12;若將各年級(jí)的男、女學(xué)生人數(shù)制成扇形統(tǒng)計(jì)圖,八年級(jí)女生對(duì)應(yīng)扇形的圓心角為44.28°.

(1)xy,z的值;

(2)求各年級(jí)女生的平均數(shù);

(3)如果從八年級(jí)隨機(jī)抽取36名學(xué)生參加社會(huì)實(shí)踐活動(dòng),求抽到八年級(jí)某同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,點(diǎn)在邊(點(diǎn)與點(diǎn)不重合) ,過點(diǎn)于點(diǎn),連結(jié)分別為的中點(diǎn),連結(jié)

1)求證:

2的大小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=8,過對(duì)角線AC中點(diǎn)O的直線分別交BC、AD邊于點(diǎn)E、F

1)求證:四邊形AECF是平行四邊形;

2)當(dāng)四邊形AECF是菱形時(shí),求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).

在數(shù)學(xué)中,當(dāng)問題的條件不夠時(shí)間,常添加輔助線構(gòu)成新圖形,形成新關(guān)系,建立已知與未知的橋梁,從而把原問題轉(zhuǎn)化為易于解決的問題.在著名美籍匈牙利數(shù)學(xué)教波利亞所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個(gè)例子:試作一個(gè)三角形,使它的三邊長分別是各條中線長的三分之一,解決這個(gè)問題的步驟如下:

第一步,如圖1,己知的三條中線,相交于點(diǎn),則有

下面是該結(jié)論的部分證明過程:

證明:如圖1,過點(diǎn)的平分線,交的延長線于點(diǎn),則

,

∵點(diǎn)的中點(diǎn),

……

第二步,同理可以證明:

第三步,如圖2,取BM的中點(diǎn),連接.的三邊長分別是各條中線長的三分之一.

任務(wù):(1)請?jiān)谏厦娴谝徊街凶C明過程的基礎(chǔ)上完成對(duì)結(jié)論的證明;

2)請完成第三步的結(jié)論的證明;

3)請直接寫出圖2的面積比:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB與弦MN相交于點(diǎn)P,∠NPB45°,若AP2,BP6,則MN的長為( )

A.B.2C.2D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點(diǎn)M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QCBC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

同步練習(xí)冊答案