【題目】如圖5,O為直線AB上一點, AOC=48°,OE平分∠AOC, DOE=90°

(1)求∠BOE的度數(shù)。

(2)試判斷OD是否平分∠BOC?試說明理由。

【答案】(1)156°;(2)OD平分∠BOC。理由見解析

【解析】試題分析:(1由角分線的定義,得到∠AOE的度數(shù),再用鄰補角的定義即可得到∠BOE的度數(shù);

2由角分線的定義,得到∠EOC的度數(shù),再由DOE=90°,得到∠DOC的度數(shù),進而求出∠BOD 的度數(shù),即可判斷出結(jié)論

試題解析:解:1OE平分AOC∴∠AOEEOCAOC=×48°=24°,∴∠BOE=180°AOE=180°24°=156° ;

2OD平分BOC理由如下:

∵∠DOE=90°,EOC24°∴∠DOC =∠DOE EOC 90°24°66°

∵∠BOD =∠BOEDOE156°90°66°,∴∠DOC=∠BOD OD平分BOC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:a(2ab)=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學綜合與實踐課中,老師帶領同學們來到婁底市郊區(qū),測算如圖所示的仙女峰的高度,李紅盛同學利用已學的數(shù)學知識設計了一個實踐方案,并實施了如下操作:先在水平地面A處測得山頂B的仰角BAC38.7°,再由A沿水平方向前進377米到達山腳C處,測得山坡BC的坡度為10.6,請你求出仙女峰的高度(參考數(shù)據(jù):tan38.7°≈0.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天數(shù)學課上老師講了整式的加減運算,小穎回家后拿出自己的課堂筆記,認真地復習老師在課堂上所講的內(nèi)容,她突然發(fā)現(xiàn)一道題目:5(2a2+3ab-b2)-(-3+ab+5a2+b2)=5a2-6b2+3被墨水弄臟了,請問被墨水遮蓋住的一項是()

A.+14abB.+3abC.+16abD.+2ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若上升15米記作+15米,則下降12米記作________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.點P在線段AB上以lcm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).

(1)若點Q的運動速度與點P的運動速度相等,當t=l時,△ACP與△BPQ是否全等?PC與PQ是否垂直?請分別說明理由;

(2)如圖(2),將圖(1)中的“AC上AB于A,BD上AB于B”改為“∠CAB=∠DBA=60”,其他條件不變.設點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x、t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張矩形紙片,剪下一個正方形,剩下一個矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個正方形,剩下一個矩形,稱為第二次操作;;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.

1)如圖1,矩形ABCD中,若AB=3,BC=9,則稱矩形ABCD  階奇異矩形.

2)如圖2,矩形ABCD長為7,寬為3,它是奇異矩形嗎?如果是,請寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請說明理由.

3)已知矩形ABCD的一邊長為20,另一邊長為aa20),且它是3階奇異矩形,請畫出矩形ABCD及裁剪線的示意圖,并在圖的下方直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形,并閱讀相關文字.

2條直線相交,3條直線相交,4條直線相交,5條直線相交;

2對對頂角,有6對對頂角,有12對對頂角,有20對對頂角;

通過閱讀分析上面的材料,計算后得出規(guī)律,當n條直線相交于一點時,有多少對對頂角出現(xiàn)(n為大于2的整數(shù)).

查看答案和解析>>

同步練習冊答案