【題目】如圖,在平面直角坐標(biāo)系中,直線yx4與拋物線y+bx+c交于坐標(biāo)軸上兩點(diǎn)A、C,拋物線與x軸另一交點(diǎn)為點(diǎn)B;

1)求拋物線解析式;

2)若動(dòng)點(diǎn)D在直線AC下方的拋物線上;

作直線BD,交線段AC于點(diǎn)E,交y軸于點(diǎn)F,連接AD;求△ADE與△CEF面積差的最大值,及此時(shí)點(diǎn)D的坐標(biāo);

如圖2,作DM⊥直線AC,垂足為點(diǎn)M,是否存在點(diǎn)D,使△CDM中某個(gè)角恰好是∠ACO的一半?若存在,直接寫(xiě)出點(diǎn)D的橫坐標(biāo);若不存在,說(shuō)明理由.

【答案】1y;

2當(dāng)m時(shí),SADESCEF的最大值為,此時(shí)點(diǎn)D坐標(biāo)為(,);

存在,點(diǎn)D的橫坐標(biāo)為點(diǎn)D橫坐標(biāo)為

【解析】

1)先求出C0,﹣4A3,0),然后代入y+bx+c,從而求出拋物線解析式;

2)①設(shè)Dm,),則tanABD,然后用m的代數(shù)式表示ADECEF面積差,利用二次函數(shù)最值求出最大值;

②作∠ACO的平分線CPx軸于點(diǎn)P,過(guò)PPHAC于點(diǎn)H.求出tanPCH,然后分兩種情況討論:Ⅰ.當(dāng)∠MCDACO=∠PCH時(shí),Ⅱ.當(dāng)∠MDCACO=∠PCH時(shí).

1)對(duì)于yx4,令x0,則y=﹣4所以C0,﹣4);

y0,則x3,

A3,0);

把點(diǎn)A、C坐標(biāo)代入拋物線解析式,

得:解得,

∴拋物線解析式為y;

2)設(shè)Dm),0m3

①連接OD,因?yàn)?/span>B(﹣1,0),Dm

tanABD,

OF=﹣m3),

OA3,OC4,

SADESCEFS四邊形AOFDSAOCAO|yD|+OF|xD|OAOC

[3(﹣m2+m+4)﹣m3m3×4]

=﹣m2+6m

=﹣m2+,

所以當(dāng)m時(shí),SADESCEF的最大值為,此時(shí)點(diǎn)D坐標(biāo)為;

②存在,點(diǎn)D的橫坐標(biāo)為點(diǎn)D橫坐標(biāo)為

作∠ACO的平分線CPx軸于點(diǎn)P,過(guò)PPHAC于點(diǎn)H

CHCO4OPPH

設(shè)OPPHx,則PA3x,

OC4,OA3,

AC5AH1

RtPHA中,

PH2+AH2AP2,

即/span>x2+12=(3x2

解得x,

tanPCH,

過(guò)點(diǎn)DDGx軸于點(diǎn)G,過(guò)點(diǎn)MMEx軸,與y軸交于點(diǎn)E,與DG交于點(diǎn)F

設(shè)Mm,),則MEmFGOE,CE,

DM⊥直線AC,

∴△CEM∽△MFD,

Ⅰ.當(dāng)∠MCDACO=∠PCH時(shí),

tanMCDtanPCH,

,即,

,

MFCE,DFME,

EFEM+MFm+,DGDF+FGm+)=﹣m+4

D,m4),

將點(diǎn)D坐標(biāo)代入y,

m4,

解得m0(舍去)或m

Ⅱ.當(dāng)∠MDCACO=∠PCH時(shí),

tanMDCtanPCH,

MF4m,DF3m

EFEM+MFm+4m5m,

DGDF+FG3m,

D5m, ),

將點(diǎn)D坐標(biāo)代入y,

,

解得x0(舍去)或x;

綜上,點(diǎn)D橫坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市精準(zhǔn)扶貧工作已經(jīng)進(jìn)入攻堅(jiān)階段,貧困的張大爺在某單位的幫扶下,把一片坡地改造后種植了大櫻桃.今年正式上市銷(xiāo)售,在銷(xiāo)售30天中,第一天賣(mài)出20千克,為了擴(kuò)大銷(xiāo)量,在一段時(shí)間內(nèi)采取降價(jià)措施,每天比前一天多賣(mài)出4千克.當(dāng)售價(jià)不變時(shí),銷(xiāo)售量也不發(fā)生變化.已知種植銷(xiāo)售大櫻桃的成本為18元/千克,設(shè)第天的銷(xiāo)售價(jià)元/千克,函數(shù)關(guān)系如下表:

表一

天數(shù)

1

2

3

……

……

20

售價(jià)(元/千克)

37.5

37

36.5

……

……

28

表二

天數(shù)

21

22

……

……

30

售價(jià)(元/千克)

28

28

……

……

28

1)求函數(shù)解析式;

2)求銷(xiāo)售大櫻桃第幾天時(shí),當(dāng)天的利潤(rùn)最大?最大利潤(rùn)是多少?

3)銷(xiāo)售大櫻桃的30天中,當(dāng)天利潤(rùn)不低于元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(jī)(單位:環(huán))如下表

第一次

第二次

第三次

第四次

第五次

第六交

9

8

6

7

8

10

8

7

9

7

8

8

對(duì)他們的訓(xùn)練成績(jī)作如下分析,其中說(shuō)法正確的是(  )

A. 他們訓(xùn)練成績(jī)的平均數(shù)相同 B. 他們訓(xùn)練成績(jī)的中位數(shù)不同

C. 他們訓(xùn)練成績(jī)的眾數(shù)不同 D. 他們訓(xùn)練成績(jī)的方差不同

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,是上半圓的弦,過(guò)點(diǎn)的切線的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)作切線的垂線,垂足為,且與交于點(diǎn),設(shè),的度數(shù)分別是.

用含的代數(shù)式表示,并直接寫(xiě)出的取值范圍;

連接交于點(diǎn),當(dāng)點(diǎn)的中點(diǎn)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過(guò)AABx軸,截取AB=OA(BA右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.

(1)求反比例函數(shù)y=的表達(dá)式;

(2)求點(diǎn)B的坐標(biāo);

(3)求OAP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寒假中,小王向小李借一本數(shù)學(xué)培優(yōu)資料,但相互找不到對(duì)方的家,電話中兩人商量,走兩家之間長(zhǎng)度為2400米的一條路,相向而行.小李在小王出發(fā)5分鐘后帶上數(shù)學(xué)培優(yōu)資料出發(fā).在整個(gè)行走過(guò)程中,兩人均保持各自的速度勻速行走.兩人相距的路程y(單位:米)與小王出發(fā)的時(shí)間x(單位:分)之間的關(guān)系如圖所示,則兩人相遇時(shí),小李走了_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等邊三角形,點(diǎn)P從點(diǎn)A出發(fā)沿ABC路徑勻速運(yùn)動(dòng)到點(diǎn)C,到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)PPQAC于點(diǎn)Q. 若△APQ的面積為y,AQ的長(zhǎng)為x,則下列能反映yx之間的大致圖象是 (  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無(wú)措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過(guò)構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由四邊形,化簡(jiǎn)得:

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于的方程的圖解法是:畫(huà),使,,,再在斜邊上截取,則的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)

根據(jù)以上閱讀材料回答下面的問(wèn)題:

1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫(xiě)出甲圖要證明的數(shù)學(xué)公式是    ,乙圖要證明的數(shù)學(xué)公式是    ,體現(xiàn)的數(shù)學(xué)思想是    ;

2)如圖2,按照實(shí)例二的方式構(gòu)造,連接,請(qǐng)用含字母的代數(shù)式表示的長(zhǎng),的表達(dá)式能和已學(xué)的什么知識(shí)相聯(lián)系;

3)如圖3,已知,為直徑,點(diǎn)為圓上一點(diǎn),過(guò)點(diǎn)于點(diǎn),連接,設(shè),求證:

    

        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn)ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°得到AB′C′

1在正方形網(wǎng)格中,畫(huà)出AB′C′;

2計(jì)算線段AB在變換到AB′的過(guò)程中掃過(guò)的區(qū)域的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案