【題目】如圖, 平分交于,交于,.
(1)求證:;
(2).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析
【解析】
(1)證明△ABD≌△ACF即可得到結(jié)論;
(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根據(jù)三角形內(nèi)角和定理可得∠CED=∠BAD=90°,即BE⊥CF,結(jié)合BD平分∠ABC可證明BC=BF.
(1)∵∠BAC=90°,
∴∠CAF=90°,
∴∠BAC=∠CAF,
又∵AB=AC,AD=AF,
∴△ABD≌△ACF,
∴∠ABD=∠ACF;
(2)在△CDE和△BDA中
∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180°
又∠ABD=∠ACF,∠CDE=∠BDA,
∴∠CED=∠BDA=90°,
∴∠CEB=∠FEB=90°,
∵BD平分∠ABC
∴∠CBE=∠FBE
又BE為公共邊,
∴△CEB≌△FEB,
∴BC=BF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=13,AB=10,△ABC的頂點(diǎn)A、B分別在射線OM、ON上,當(dāng)點(diǎn)B在ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),△ABC的形狀始終保持不變,在運(yùn)動(dòng)的過(guò)程中,點(diǎn)C到點(diǎn)O的最小距離為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一三角形紙片ABC,∠A=70°,點(diǎn)D是AC邊上一點(diǎn),沿BD方向剪開(kāi)三角形紙片后,發(fā)現(xiàn)所得兩個(gè)紙片均為等腰三角形,則∠C的度數(shù)可以是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如右圖所示,直線y1=-2x+3和直線y2=mx-1分別交y軸于點(diǎn)A,B,兩直線交于點(diǎn)C(1,n).
(1)求m,n的值;
(2)求ΔABC的面積;
(3)請(qǐng)根據(jù)圖象直接寫(xiě)出:當(dāng)y1<y2時(shí),自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正△ABC的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),,則y關(guān)于x的函數(shù)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B在直線上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( )
A. (0,0) B. (,) C. (,) D. (,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知E是平行四邊形ABCD中DA邊的延長(zhǎng)線上一點(diǎn),且AE=AD,連接EC分別交AB,BE于點(diǎn)F、G.
(1)求證:BF=AF;
(2)若BD=12cm,求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小玲和弟弟小東分別從家和圖書(shū)館同時(shí)出發(fā),沿同一條路相向而行,小玲開(kāi)始跑步中途改為步行,到達(dá)圖書(shū)館恰好用30min.小東騎自行車(chē)以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開(kāi)出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書(shū)館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量的取值范圍;
(3)求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是規(guī)格為的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為,點(diǎn)的坐標(biāo)為;
(2)在第二象限內(nèi)的格點(diǎn)上找一點(diǎn),使點(diǎn)與線段組成一個(gè)以為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),畫(huà)出,則點(diǎn)的坐標(biāo)是 ,的周長(zhǎng)是 (結(jié)果保留根號(hào));
(3)作出關(guān)于軸對(duì)稱的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com