【題目】如圖,在矩形ABCD中,AB2,BC3,MBC的中點,DEAM于點E

1)求證:ADE∽△MAB;

2)求DE的長.

【答案】1)見解析;(2DE

【解析】

1)要證ADE∽△MAB,只要找出兩個三角形相似的條件即可,根據(jù)題意好矩形的性質(zhì)可以證明ADE∽△MAB;
2)根據(jù)題意和(1)中ADE∽△MAB,利用對應邊的相似比相等和勾股定理可以解答本題.

證明:(1)∵在矩形ABCD中,DEAM于點E

∴∠B90°,∠BAD90°,∠DEA90°,

∴∠BAM+EAD90°,∠EDA+EAD90°,

∴∠BAM=∠EDA,

ADEMAB中,∵∠AED=∠B,∠EDA=∠BAM,

∴△ADE∽△MAB;

2)∵在矩形ABCD中,AB2BC3,MBC的中點,

BM,

AM

由(1)知,ADE∽△MAB

,

,

解得,DE

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=6厘米,BC=12厘米,點P沿AB邊從點A開始向點B以1厘米/秒的速度移動,點Q沿BC從點B開始向點C以2厘米/秒的速度移動,如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6).

(1)當PB=2厘米時,求點P移動多少秒?

(2)t為何值時,△PBQ為等腰直角三角形?

(3)求四邊形PBQD的面積,并探究一個與計算結(jié)果有關(guān)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,,直線軸和軸分別交于點,若拋物線與直線有兩個不同的交點,其中一個交點在線段上(包含,兩個端點),另一個交點在線段上(包含兩個端點),則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形 沿折疊,使落在邊的點處,過于點,連接,若=6,,則的長為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若數(shù)k使關(guān)于x的不等式組只有4個整數(shù)解,且使關(guān)于y的分式方程+1的解為正數(shù),則符合條件的所有整數(shù)k的積為(  )

A.2B.0C.3D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級有24個班,共1 000名學生,他們參加了一次數(shù)學測試.學校統(tǒng)計了所有學生的成績,得到下列統(tǒng)計圖.

1)求該校九年級學生本次數(shù)學測試成績的平均數(shù);

2)下列關(guān)于本次數(shù)學測試說法正確的是(

A.九年級學生成績的眾數(shù)與平均數(shù)相等

B.九年級學生成績的中位數(shù)與平均數(shù)相等

C.隨機抽取一個班,該班學生成績的平均數(shù)等于九年級學生成績的平均數(shù)

D.隨機抽取300名學生,可以用他們成績的平均數(shù)估計九年級學生成績的平均數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字12B布袋中有三個完全相同的小球,分別標有數(shù)字﹣1,﹣22.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為(x,y).

1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;

2)求點Q落在直線y=﹣x上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEF中,∠EAF=45°,AGEF于點G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長BEDF相交于點C

1)求證:四邊形ABCD是正方形;

2)連接BD分別交AE、AF于點M、N,將ABM繞點A逆時針旋轉(zhuǎn),使ABAD重合,得到ADH,試判斷線段MN、ND、DH之間的數(shù)量關(guān)系,并說明理由.

3)若EG=4,GF=6BM=3,求AG、MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】工人師傅用一塊長為2m,寬為1.2m的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)

(1)若長方體底面面積為1.28m2,求裁掉的正方形邊長;

(2)若要求制作的長方體的底面長不大于底面寬的3倍,并將容器進行防銹處理,側(cè)面每平方米的費用為50元,底面每平方米的費用為200元,裁掉的正方形邊長多大時,總費用最低,最低為多少?

查看答案和解析>>

同步練習冊答案