已知:在⊙O中,AB是直徑,CB是⊙O的切線,連接AC與⊙O交于點(diǎn)D,
(1)求證:∠AOD=2∠C;
(2)若AD=8,tanC=,求⊙O的半徑.

【答案】分析:(1)連接BD,利用切線的性質(zhì)定理和圓周角定理以及圓的半徑相等即可證明∠AOD=2∠C;
(2)由(1)可知:tanC=tan∠ABD,在Rt△ABD中利用角ABD的正切值可求出BD,再利用勾股定理即可求出AB進(jìn)而求出圓的半徑.
解答:(1)證明:連接BD,
∵BC是⊙O的切線,
∴∠ABC=90°
∵AB是直徑,
∴∠ADB=90°,
∴∠ABD=∠C,
∵OD=OB,∴∠OBD=∠ODB,
∵∠AOD=∠ODB+∠OBD,
∴∠AOD=2∠C;   

(2)解:由(1)可知:tanC=tan∠ABD=
在Rt△ABD中有:tan∠ABD=
=,
∴BD=6,
∴AB=,
∴半徑為5.
點(diǎn)評(píng):本題考查了切線的性質(zhì)、圓周角定理以及銳角三角函數(shù)和勾股定理的運(yùn)用,解題的關(guān)鍵是連接BD構(gòu)造直徑所對(duì)的圓周角為直角,從而得到直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,AB=4,BC=5,CA=6.
(1)如果DE=10,那么當(dāng)EF=
 
,F(xiàn)D=
 
時(shí),△DEF∽△ABC;
(2)如果DE=10,那么當(dāng)EF=
 
,F(xiàn)D=
 
時(shí),△FDE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、已知:在△ABC中,AB≠AC,求證:∠B≠∠C.若用反證法來(lái)證明這個(gè)結(jié)論,可以假設(shè)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•香坊區(qū)一模)已知:在△ABC中,AB=AC,點(diǎn)P是BC上一點(diǎn),PC=2PB,連接AP,作∠APD=∠B交AB于點(diǎn)D.連接CD,交AP于點(diǎn)E.
(1)如圖1,當(dāng)∠BAC=90°時(shí),則線段AD與BD的數(shù)量關(guān)系為
AD=
5
4
BD
AD=
5
4
BD

(2)如圖2,當(dāng)∠BAC=60°時(shí),求證:AD=
7
2
BD;
(3)在(2)的條件下,過(guò)點(diǎn)C作∠DCQ=60°交PA的延長(zhǎng)線于點(diǎn)Q如圖3,連接DQ,延長(zhǎng)CA交DQ于點(diǎn)K,若CQ=
67
2
.求線段AK的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,AB=AC=2a,∠ABC=∠ACB=15° 求:S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在△ABC中,AB=3,AC=7,BC長(zhǎng)是正整數(shù),當(dāng)△ABC的周長(zhǎng)最大時(shí),此時(shí)BC的長(zhǎng)為
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案